AmebaD BLE Stack User Manual

V10.1

2019/9/17

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

Revision History

Date \ersion Comments Author Reviewer
2018/12/13 V1.0.0 Formal version Jane
2019/09/17 V1.0.1 Modify BT features. Jane

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

Contents

Y I o g 151 (o] Y PSSP 2
TADIE LLISE . E bbbttt 5
o = T T TP TP PP PP PPROTRPPY 6
(©] (015157 Y TP P PP P P PPRTRPPY 8
L OVBIVIBW ...tttk o1t ek e ke oAbt e ke R e oAkt e kRt b e bRttt 9
1.1 SUPPOITEA BT FEALUMES......ceteiiiieetieitie sttt ettt ekttt et e et e et et e e nbe e s bneebeenbee s 9
1.2 BLE Profile ArCNITECTUIE.oeiiiiiiiiiee ettt nre s 10
O L ST 10
1.2.2 GATT BaSEA PrOfile.......oiiiiiiiiieieieeee e 11

2 GAP e E b E bR E £ R h R R AR e R AR bRt bR e R bRkt b bt b et r e 12
2.1 GAP SETUCLUIE OVEIVIBW. ...ttt ettt b bbb bbbt nb e nbe e e 13
2.1.0 GAP LOCAIION. ...ttt h b bbbkt bbb bbbt n e 13
N Y N e O Vo o | Y2 TSP 13
2.0.3 GAP SEALE «...eeeei ittt e e e b b e e b bt e e b e e e b b e e e st ba e e e nbbee s 14
2.1.4 GAP IMEBSSAGE ... tteeeuteee sttt ettt ettt ettt ettt e e sttt e eh et e b e ekt e bt e bt e R Rt e Rt R e e nn b e arr e nr e e 18
2.1.5 APP MESSAJE FIOW.....c.ueiiiiiiiiiiette ettt 19

2.2 GAP Initialization and Startup FIOWcc.ooiiiiiiii e 21
2.2.1 GAP Parameters INItIaliZatioN.cooueiiiiiiiie e 21
2.2.2 GAP STAMUD FIOW ...ttt ettt et e et e nne e ent e et e enaeeteenneeaneas 27

2.3 BLE GAP IMESSAQE ...ttt ettt ettt s et b ket ek R R 28
2.3.0 OVEIVIBW. ...ttt bbbkt b bbbt b bRttt 28
2.3.2 DEVICE SEALE MESSATE ...ecvvvietieeeitee sttt e sttt e e st e e et e e st e e e st e e et e e st e e s be e e sabeeesbbeesbeeesnteeesraeesnreeeanes 29
2.3.3 CoNNECtioN REIAIE IMEBSSAQE .. .ccvveeiieeeiitee et e et e st ee st e et e e st e e st e e e ate e e stae e s te e e snae e s staeesneeeanes 31
2.3.4 Authentication Related MESSATEcvvieiuveeiiiiieiitee ettt st e s e e re e e sare e s rae e st e e snbe e srbe e e nree e e 33

2.4 BLE GAP CallDaCKeiiiieiie ettt te et e e be e nre e 36
2.4.1 BLE GAP Callback MeSSage OVEIVIEWccueiiiiiiiieiiieie sttt sttt sttt sttt nneas 37

2.5 BLE GAP USE CaSE ...eeeitiiiiite ittt ettt ettt ettt ettt ekt e ekt e s st e e ek bt e e b b e e s b et e anbe et e e n e e nnreas 40
2.5.1 GAP Service Characteristic Wrteable.............cooiiiiiiiie e 40

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

2.5.2 Local Static RANAOM AGAIESSoiviiieiiiieiiiee e 42
2.5.3 PhySICal (PHY) SELLING ... ueiiiiiiiiiee ittt et ae e s be e e snbe e s srbe e e nreeeanes 43

2.6 GAP INFOrMALION STOTAGE veeueeitieiie ittt ettt b e bbb sbe et 46
2.6.1 FTL INErOQUCTION ...ttt b ettt sttt e bbb sne e b 46
2.6.2 Local Stack INfOrmation STOTAQE..........ueiiiiiieiie ittt 47
2.6.3 BONd INFOrMALION STOTAGE. ... eeiuvieiieitieeiie ettt 48

B G ATT PrOTUE. ...ttt ettt ettt et b et b e nre s 56
B L BLE PIOFIIE SEIVE ...ttt b et 56
BLL.1 OVEIVIBW. ...tttk ke s bttt ekt ekt h ekt e b e e ke e R e ekt e bt e bt e bt bt e bt be e nbe st 56
3.1.2 Supported Profile and SEIVICE.........coiuii ittt e 57
3.1.3 Profile Server INtEIraCtiONccuiiiiiiieiiii et 58
3.1.4 Implementation Of SPECITiC SEIVICE........ccuviiiiii e 74

3.2 BLEPIOTIlE CHIENT ...t 83
B.2.0 OVEIVIBW. ..tttk h ekt h et h ekt h ekt e s ekt e R ekt e bt bt e b e bt e b be e nbeene et 83
3.2.2 SUPPOIEA CHIBNES ...ttt ettt ettt b ettt et b e e b beenbeene e b 84
3.2.3 PrOfile CHENE LAYET ...ttt bbbttt bbb 84

4 BLE SAMPIE PrOJECES ...tttk ettt ettt 97
4.1 BLE Peripheral APPHCAIIONc.iiiiiiieiiecie sttt et e e e nnee s 97

A L1 INEFOOUCTION ...tttk b etk e e bt e bt e bt et e 97
O I o (] 1= T A @ AV = YT OSSR 98
4.1.3 SOUICE COUE OVEIVIEW ...ttt etttk b ekttt e b e e et et e 98
414 TESEPIOCEUUIE.......oiiiiiti ittt bbbttt nb e 101
RETEIBICES ... bbbt 103

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

Table List

Table 1-1 SUPPOIEA BT FRAIUIES.......cuiiiieetiisiete ettt b ettt b bt s bbbttt et e et beb e e 9
Table 2-1 AdvertiSing Parameters SEIIINGccoo ettt sttt st b ettt be et 24
Table 2-2 Authentication Related IMESSAGEcvvviveirieiriririeiree ettt sttt s sa s e e tene e seneseesere e 33
Table 2-3 gap_16.n REIAEd MESSAQESvcvvrieieirieieesietesisere sttt ettt se et s e e e beseseesesessetesesensenesensenens 37
Table 2-4 gap_conn_le.h Related MESSAQEScvvviveirieieiririeereetee sttt e et ssese e stesesessenenaeserenens 38
Table 2-5 gap_bond _16.h REIAtEd IMESSAGESciviveieeieiiriiieesietee sttt st a st s e sae e e besessssenesaerenesens 39
Table 2-6 gap_SCaN.N RelGtEU IMESSAQESc.vcveeririeiieteiesisei et ettt be st se et se e sae s e e stesessssenesserenesens 40
Table 2-7 gap_adV.n REIAtEA MESSAQESc.civeveveririeiietetisisere ettt sttt e bt se st et e e b s e se b se e bese s s senesnerereseas 40
Table 3-1 SUPPOIEA PrOTIlE LIStcuciiiieeiiciee ettt ettt s s e e s eene e 57
Table 3-2 SUPPOIEA SEIVICE LISE.....cueuiiieeiieieieiisieeie ettt sttt e et e e st e e stese e nbenesensene e nseneneas 58
Table 3-3 Flags Option Value and DeSCIIPLIONcovieirieirieei sttt sae e stese s ssenesesseseneas 75
Table 3-4 FIags Valug SEIECE IMOUEucviieircee sttt st ne ettt ne e sere e esenens 76
Table 3-5Valug OF PEIMISSIONSc.viiiiiiieiieteteieice sttt bbbt bbbttt bbbttt 77
Table 3-6 SErvice Table EXAMPIEcviviiriieeire ettt sttt st et se e s e s e s e e st eneseseene e nsenenens 77
Table 3-7 SUPPOIEA CHENTSceeiiiiietiiieeieste ettt ettt b bbbk b bt stk sttt e et e b sttt e e bebe e 84
TaDIE 3-8 DISCOVEIY STAEecviieeierisiete sttt sttt ettt bbb bbbt bbbt bbbt b et b ke et b et s beb et be e et be e 87
Table 3-9 DISCOVEIY RESUIL.......ceiiiiietieee ettt bbbt bbb b et b ekttt e e bbbt e bt neas 88

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

Figure List

Figure 1-1 BIUBTOOTN PIOTIHEScucuiiiiiiitce ettt bbb bbb bbbt bbb 10
Figure 1-2 GATT Based Profile HIEIarCh ...ttt 11
T U] = = I | oSSR 12
FIQUIE 2-2 GAP HEAUET FIESveeeiecieictee ettt ettt sttt e et et e e ne et e e ebenenaene s 12
Figure 2-3 GAP LOCALION 1N SDKoiicieiiisieiiisee ettt se et s et se s et e s s et e e neesesesaetenenesens 13
Figure 2-4 Advertising State Transition MaChaniSIMcccvvieiiieieiinser e s 15
Figure 2-5 Scan State Transition IMaChaNISMccvviieiiiiieie et be st nesaese s 16
Figure 2-6 Active State Transition MaChaniSIMcccoiiiieiiiiiiciieee e st b e e e ne s 17
Figure 2-7 Passive State Transition MaChaniSIM ..ottt 18
Figure 2-8 APP IMESSAGE FIOWc.cveiiiicieiiisices ettt sttt st sttt e b et e ne et e e ebenenaene s 20
FIQUIE 2-9 FTL LAYOUL....cutiiiteiiisteiesisteieeste sttt sttt st s e et se s se et et se e s r e na et e s e neene e neeseneneenens 47
Figure 2-10 AQd A BONG DBVICEcveuiiiieeirisieiisieesis e st s e sas s seste e e sesessesesessssesessssesessesesessssessssssessssesenessssenes 48
Figure 2-11 REMOVE A BONU DEVICEocveueiieiiieterisie ettt ettt sa et et se s e et s e et e s e es 49
Figure 2-12 Clear All BONG DEVICESceriiueirisietirisieiesesteeseseeseseresessesesestesestesesessssesessesessssssessssesessssesessssesesssseseses 49
Figure 2-13 Set ABONd DeVICE High PrIOMILYceiiiiiiiiriiei ettt s 49
Figure 2-14 Get High PriOMity DEVICE.......ccovieiriieieririeecste ettt ettt sttt st 49
Figure 2-15 Get LOW PrIOMTY DEVICEcceoivieuiirieieiirieeisie sttt sttt bbbttt st 50
Figure 2-16 Priority Manager EXAMPIE ...ttt bbb sttt 50
FIQUIE 2-17 LE FTL LAYOULoeiteitiieieieiitete sttt sttt st b bbbt bbbt sttt ettt e e b b 51
Figure 3-1 GATT Profile HEAGET FIlEScoieiiiciiee ettt et 56
Figure 3-2 Profile SErVEr HIEIarCYcooiiciicee ettt ee 57
FIQUIE 3-3 AU SEIVICES T0 SEIVELveviicieeiiiiteeis ettt sttt a et s e st et e e se et e s et et e s e s e e sese st et e s e ssebeseseeteneneenenis 59
FIQUIE 3-4 REZISLET SEIVICE S PTOCESS . ..vvvettiiriiesiiiesesisteteteieiesee st se sttt bbb ebe et st se bbb b bbb e se e e e s bbbttt ese e e e e 60
Figure 3-5 Read Characteristic Value - Attribute Value Supplied in Attribute Element............ccooeeiiiiiiiciiienn, 62
Figure 3-6 Read Characteristic Value - Attribute Value Supplied by Application without Result Pending.............. 63
Figure 3-7 Read Characteristic Value - Attribute Value Supplied by Application with Result Pending 64
Figure 3-8 Write Characteristic Value - Attribute Value Supplied in Attribute Elementcccocevvvvceiveccnnenenn, 65
Figure 3-9 Write Characteristic Value - Attribute Value Supplied by Application without Result Pending 66
Figure 3-10 Write Characteristic Value - Attribute Value Supplied by Application with Result Pending................. 67
Figure 3-11 Write Characteristic Value — Write CCCD ValUE...........cccovvieiriecissereseeee e s 68
Figure 3-12 Write without Response - Attribute Value Supplied by Applicationccccoveivivceiveien e 71
Figure 3-13 Write Long Characteristic Values — Prepare Write ProCeAUIEcooovvveerireeiersee e 71
Figure 3-14 Write Long Characteristic Values— Execute Write without Result Pendingccccoeoeevneiiinennniene, 72

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

file:///E:/AmebaD/UM0403%20Realtek%20AmebaD%20BLE%20Stack%20User%20Manual%20EN.docx%23_Toc532478856
file:///E:/AmebaD/UM0403%20Realtek%20AmebaD%20BLE%20Stack%20User%20Manual%20EN.docx%23_Toc532478857

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

Figure 3-15 Write Long Characteristic Values— Execute Write with Result Pending..........cccocoeovieinnnicciennene, 72
Figure 3-16 Characteristic Value NOTITICALIONccoiiiiiieine bbb 73
Figure 3-17 Characteristic Value INICALION ..o bbbttt 73
Figure 3-18 Profile CHENE HIBIAICNYcoiiieiiiicesee ettt bbbt 83
Figure 3-19 Add Specific Clients to Profile CIIENt LAYETccccvvveeiriciireeesee s 86
Figure 3-20 GATT DiSCOVENY PrOCEUUIEcveiieieeirisieesie ettt sttt se et n s ese e saesenenaenenes 87
Figure 3-21 Read Characteristic Value BY HandIecocvviieiiccisse e 89
Figure 3-22 Read Characteristic Value DY UUID ...ttt 90
Figure 3-23 Write CharaCteriStiC ValUB...........ccvviveriiiiieiiisice sttt ettt sn e ee 91
Figure 3-24 Write LoNg CharacteriStic ValUEccvvvieirieieiiresi ettt sttt 91
Figure 3-25 WIite WItNOUL RESPONSEcuiiieiiisieierisie ettt sttt sttt e se et e e be b e e sese e e berenenaenenees 92
Figure 3-26 Characteristic Value NOLITICALIONccccoieirieeirre et 92
Figure 3-27 Characteristic Value Indication without Result PENdiNgGcccvivvrriirneiinsensee s 93
Figure 3-28 Characteristic Value Indication with ReSult PENINGcceovreiiiiieiiicc s 94
Figure 4-1 TeSt WIth 1OS DEVICEc.cvivrieiiirieieiiie ettt ettt se st s e b s se et e e eteneneeseneseesenenensens 102

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

Glossary
Terms Definitions
ATT Attribute protocol
BLE Bluetooth Low Energy
GAP Generic Access Profile
GATT Generic Attribute Profile
L2CAP Logical Link Control and Adaptation protocol
SDK Software Development Kit
SMP Security Manager protocol
SOC System on Chip

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

(:;&q"% REALTEK AmebaD BLE Stack User Manual

1 Overview

The Realtek Software Development Kit (SDK) provides software documentation including stack/profiles,
reference material, example profiles and user applications, aiming to help with product development using Realtek
Series of System on Chip (SOC) devices.

SDK facilitates quick development of Bluetooth Low Energy (BLE) application. Profile is one of the modules
constituting SDK, which packages underlying implementation details for Low Energy protocol stack, and
provides user-friendly and easy-to-use interfaces for use in development of application.

The purpose of this document is to give an overview of BLE Stack Interfaces. BLE Stack Interfaces can be
divided into Generic Access Profile (GAP) interfaces and Generic Attribute Profile (GATT) based profile

interfaces.

1.1 Supported BT Features

Table 1-1 Supported BT Features
Spec \ersion BT Feature AmebaD Remark
Advertiser Y
Scanner
Initiator
Maximum number is 3.
Maximum number is 1.

Master

Slave

Low Duty Cycle Directed Advertising
LE L2CAP Connection Oriented Channel
LE Scatternet

LE Ping

LE Data Packet Length Extension

LE Secure Connections

Link Layer Privacy(Privacyl.2)

Link Layer Extended Filter Policies

2 Msym/s PHY for LE

LE Long Range

High Duty Cycle Non-Connectable
Advertising

LE Advertising Extensions

LE Channel Selection Algorithm #2

1 Master + 1 Slave

<KZ<xZzZ<<<<2zZ<<<-<-<x

2

2

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

fr’%’% REALTEK AmebaD BLE Stack User Manual
1.2 BLE Profile Architecture

Definition of profile in Bluetooth specification is different from that of Protocol. Protocol is defined as layer
protocols in Bluetooth specification such as Link Layer, Logical Link Control and Adaptation protocol (L2CAP),
Security Manager protocol (SMP), and Attribute protocol (ATT), while Profile involves implementation of
interoperability of Bluetooth applications from the perspective of how to use layer protocols in Bluetooth
specification. Profile defines features and functions that are available in Protocol, and implementation of
interaction details between devices, so as to accommodate Bluetooth protocol stack to application development in
various scenarios.

The relationship between Profile and Protocol in Bluetooth specification is shown in Figure 1-1.

Bluetooth Profiles

Bluetooth Protocol Layers

Figure 1-1 Bluetooth Profiles

As shown in Figure 1-1, Profile is illustrated in red rectangular, GAP, Profile #1, Profile #2, and Profile #3.
Profiles in Bluetooth specification are classified into two types - GAP and GATT Based Profile (Profile #1,
Profile #2 and Profile #3).

1.2.1 GAP

GAP is basic Profile which must be implemented by all Bluetooth devices, and used to describe actions and
methods including device discovery, connection, security requirement, and authentication. GAP for Bluetooth
Low Energy also defines 4 application roles - Broadcaster, Observer, Peripheral and Central - for optimization in
various application scenarios.

Broadcaster is applicable to applications sending data only via broadcast. Observer is applicable to applications
receiving data via broadcast. Peripheral is applicable to applications setting link connection. Central is applicable

to applications setting a single or multiple link connections.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

10

% U,% REALTEK AmebaD BLE Stack User Manual

1.2.2 GATT Based Profile

In Bluetooth specification, another commonly used Profile is GATT Based Profile. GATT is a standard based on
server-client interaction defined in Bluetooth specification, and is used to implement provision of service data and
access to service data. GATT Based Profile is a standard which is defined based on server-client interaction to
meet various application cases and used for data interaction between devices as specified. Profile is made up in

the form of Service and Characteristic, as shown in Figure 1-2.

Profile

Service Service

Include ; H Include

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Characteristic : Characteristic

_Pmperties {1 Properties i

Figure 1-2 GATT Based Profile Hierarchy

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

11

7 U@ REALTEK AmebaD BLE Stack User Manual

2 GAP

GAP is basic Profile which must be implemented by all Bluetooth devices, and is used to describe actions and
methods including device discovery, connection, security requirement, and authentication.
GAP Layer has been implemented in BT Lib, and provides interfaces to application. BT Lib files directory:

component\common\bluetooth\realtek\sdk\board\amebad\lib.

#%| btgap.a
Figure 2-1 BT Lib

Header files are provided in SDK. GAP header files directory:
component\common\bluetooth\realtek\sdk\board\amebad\inc\bluetooth\gap.

i) bt types.h

) gap.h

& gap_adv.h

% gap_bond le.h

i) gap_callback _le.h

% gap_conn_leh

& qap leh

&) gap_le types.h

&) gap_msg.h

%) gap_scanh

& gap _storage le.h

Figure 2-2 GAP Header Files
GAP layer will be introduced according to the following several parts:
* GAP layer structure will be introduced in chapter GAP Structure Overview.
* Configuration of GAP parameters and GAP internal startup flow please refer to chapter GAP Initialization
and Startup Flow.
* GAP message type definitions and GAP Message processes flow please refer to chapter BLE GAP Message.
* GAP message callback function is used by GAP Layer to send messages to application, more information
about GAP message callback please refer to chapter BLE GAP Callback.

* Howto use GAP interfaces please refer to chapter BLE GAP Use Case.
* Local stack information and bonding device information storage implemented by GAP layer will be

introduced in chapter GAP Information Storage.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

2.1 GAP Structure Overview

2.1.1 GAP Location

GAP is one part of Bluetooth protocol stack, as shown in Figure 2-3, protocol stack is surrounded in dashed box.
On top of protocol stack is application, and baseband / RF located beneath protocol stack. GAP provides

interfaces for application to access upper stack.

Aapplication

GAP
ac

|
|
|
|
|
Upper Stack |
|
|
|
1

Lower Stack

_—— e e = = = — —

bV

[
|
|
|
|
I
I

baseband / RF

Figure 2-3 GAP Location in SDK

2.1.2 GAP Capacity

The capacity provided by GAP API is as below:
1. Advertising related
Including set / get advertising parameters, start / stop advertising.
2. Scan related
Including set / get scan parameters, start / stop scan.
3. Connection related
Including set connection parameters, create a connection, terminate the existing connection, and update
connection parameter.
4. Pairing related
Including set pairing parameters, trigger pairing procedure, input / display passkey using passkey entry, delete

keys of bonded device.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

7 U@ REALTEK AmebaD BLE Stack User Manual

5. Key management

Including find key entry by device address and address type, save / load keys about bond information, resolve

random address.
6. Others

* Set GAP common parameters including device appearance, device name, etc.

* Get maximum supported BLE link humber.

* Modify local white list.

* Generate/set local random address

* Configure local identity address.

* Etc
APIs don’t support multiple threads, operations of calling APIs and handling message must be in the same task.
APIs supplied in SDK can be divided into synchronous APl and asynchronous API. The result of synchronous API
is represented by return value, such as le_adv_set param(). If return value of le_adv_set param() is
GAP_CAUSE_SUCCESS, APP sets a GAP advertising parameter successfully. The result of asynchronous API is
notified by GAP message, such as le_adv_start(). If return value of le_adv_start() is GAP_CAUSE_SUCCESS,
request of starting advertising has been sent successfully. The result of starting advertising is notified by GAP

message GAP_MSG_LE_DEV_STATE_CHANGE.

2.1.3 GAP State

GAP State consists of advertising state, scan state, connection state. Each state has corresponding sub-state, and

this part will introduce the state machine of each sub-state.

2.1.3.1 Advertising State

Advertising State has 4 sub-states including idle state, start state, advertising state and stop state. Advertising

sub-state is defined in gap_msg.h.
[* GAP Advertising State */

#define GAP_ADV_STATE_IDLE 0 //'ldle, no advertising

#define GAP_ADV_STATE _START 1 // Start Advertising. A temporary state, haven't received the result.
#define GAP_ADV_STATE_ADVERTISING 2 // Advertising

#define GAP_ADV_STATE_STOP 3 /I Stop Advertising. A temporary state, haven't received the result.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

14

7 U@ REALTEK AmebaD BLE Stack User Manual

Start advertising |
Idle Start
ry ﬁ:HSTaIt advertising fail
K-\""'\-HH
Stop advertising succeed High duty advertising timeout Start advertising succeed
x“'“‘n‘
- T Y
Stop advertising r
Stop - Advertising

Stop advertising fail

Figure 2-4 Advertising State Transition Machanism

1. Idle state
No advertising, default state.

2. Start state
Start advertising from idle state, but process of enabling advertising hasn’t been completed yet. Start state is a
temporary state. If advertising is successfully started, then Advertising State will turn into advertising state.
Otherwise it will turn back to idle state.

3. Advertising state
Start advertising successfully. In this state, the device is sending advertising packets. If advertising type is
high duty cycle directed advertising, Advertising State will change into idle state once high duty cycle
directed advertising is timed out.

4. Stop state
Stop advertising from advertising state, but process of disabling advertising hasn’t been completed yet. Stop
state is a temporary state. If advertising is successfully stopped, Advertising State will turn into idle state.

Otherwise Advertising State will turn back to advertising state.

2.1.3.2 Scan State

Scan State has 4 sub-states including idle state, start state, scanning state and stop state. Scan sub-state is defined

in gap_msg.h.

/* GAP Scan State */

#define GAP_SCAN_STATE_IDLE 0 //Iidle, no scanning

#define GAP_SCAN_STATE_START 1 //Start scanning. A temporary state, haven't received the result.
#define GAP_SCAN_STATE_SCANNING 2 /IScanning

#define GAP_SCAN_STATE_STOP 3 /IStop scanning, A temporary state, haven't received the result

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

15

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

Start scan
£
Idle Start
A B Start scan fail
Stop scan succeed Start scan succeed
. Stop scan L]
Stop | _ | Scanning

Stop scan fail

Figure 2-5 Scan State Transition Machanism
1. Idle state
No scan, default state.
2. Start state
Start scan in idle state, but process of enabling scan hasn’t been completed yet. Start state is a temporary state.
If scanning is successfully started, Scan State will change to scanning state. Otherwise Scan State will turn
back to idle state.
3. Scanning state
Start scan completely. In this state, the device is scanning advertising packets.
4. Stop state
Stop scan in scanning state, but process of disabling scan hasn’t been completed yet. Stop state is a temporary
state. If scanning is successfully stopped, Scan State will change to idle state; otherwise Scan State will turn

back to scanning state.

2.1.3.3 Connection State

Due to support of multilink, the link could be connected or disconnected when GAP Connection State is idle state,
so the transition of connection state needs to be combined with gap state and link state.
GAP connection sub-state includes idle state, connecting state. GAP connection sub-state is defined in gap_msg.h.

#define GAP_CONN_DEV_STATE_IDLE 0 /n<idle
#define GAP_CONN_DEV_STATE_INITIATING 1 //!< Initiating Connection

Note: GAP can only create one link at the same time, which means application cannot create another link when
GAP Connection State is in connecting state.

Link sub-state includes disconnected state, connecting state, connected state and disconnecting state. Link
sub-state is defined in gap_msg.h.

/* Link Connection State */

typedef enum {
GAP_CONN_STATE_DISCONNECTED, // Disconnected.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

16

4 REALTEK

AmebaD BLE Stack User Manual

GAP_CONN_STATE_CONNECTING, // Connecting.

GAP_CONN_STATE_CONNECTED, /I Connected.

GAP_CONN_STATE_DISCONNECTING // Disconnecting.
} T_GAP_CONN_STATE;

Connection state transition is different between actively creating a connection as master role and passively

receiving a connection indication as slave role. This section will describe these two cases separately.

2.1.3.3.1 Active State Change

Active:

(GAP) : (LINK) E)iSCDﬂ.ﬂBCtEd SUCCEeES (’GAP) : (LINK)

Idle : Disconnected | Idle : Disconnecting
A p L
Create connection fail //’
Di_scm;nect Disconnect
Create connection /,/
Y yd
T T
(GAP) | (LINE) _ (GAP) | (LINK)
Connecting : Connecting Create connection Idle : Connected

SUCCEess

Figure 2-6 Active State Transition Machanism

1. Idle| Disconnected state
GAP Connection State is in idle state, Link State is in disconnected and connection hasn’t been established.

2. Connecting | Connecting state
Master creates a connection, and the process hasn’t been completed yet. It is a temporary state. GAP
Connection State changes to connecting state, and Link State turns to connecting state. If connection is
successfully established, Link State will turn to connected state, and GAP Connection State will trun to idle
state again. If failing to create connection, Link State will turn back to disconnected state, and GAP
Connection State will turn back to idle state. In this state, master can also disconnect the link, if so, Link State
will change to disconnecting state and GAP Connection State will turn to idle state.

3. ldle | Connected state
A connection has been created. GAP Connection State is in idle state and Link State is in connected state.

4. Idle | Disconnecting state
Master terminates the link and the process hasn’t been completed yet, and it is a temporary state. GAP
Connection State is in idle state and Link State is in disconnecting state. If terminate the link successfully,

Link State will change to disconnected state.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

17

% U@ REALTEK AmebaD BLE Stack User Manual

2.1.3.3.2 Passive State Change

Passive:
(GAP) (LINK) Accept connection» (GAP) (LINK)
Advertising | Disconnected Idle Connecting
Connection complete
(GAP) (LINK) <Dis,connect indicate (GAP) (LINK)
Idle Disconnected Idle Connected

Figure 2-7 Passive State Transition Machanism
1. Slave accept connection
When slave receives connect indication, GAP Advertising State will change to idle state from advertising state
and Link State will change to connecting state from disconnected state, after the processs of creating
connection has been completed, Link State turns into connected state.
2. Disconnect by peer
When peer device disconnects the link and disconnect indication is received by local device, local device’s

Link State will change to disconnected state from connected state.

2.1.4 GAP Message

GAP message includes BT status message and GAP APl message. BT status message is used to notify APP some
information including device state transition, connection state transition, bond state transition etc. GAP API
message is used to notify APP that function exec status after the APl has been invoked. Each API has an
associated message. More information about GAP message please refers to chapter BLE GAP Message and

chapter BLE GAP Callback.

2.1.4.1 BT Status Message

BT status message is defined in gap_msg.h.

[* BT status message */

#define GAP_MSG_LE_DEV_STATE_CHANGE 0x01 // Device state change msg type.

#define GAP_MSG_LE_CONN_STATE_CHANGE 0x02 // Connection state change msg type.

#define GAP_MSG_LE_CONN_PARAM_UPDATE 0x03 // Connection parameter update changed msg type.
#define GAP_MSG_LE_CONN_MTU_INFO 0x04 // Connection MTU size info msg type.

#define GAP_MSG_LE_AUTHEN _STATE_CHANGE 0x05 // Authentication state change msg type.
#define GAP_MSG_LE_BOND_PASSKEY_DISPLAY 0x06 // Bond passkey display msg type.
#define GAP_MSG_LE _BOND_PASSKEY _INPUT 0x07 // Bond passkey input msg type.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

18

% U@ REAI-TEK AmebaD BLE Stack User Manual

#define GAP_MSG_LE_BOND_OOB_INPUT 0x08 // Bond passkey oob input msg type.
#define GAP_MSG_LE_BOND_USER_CONFIRMATION 0x09 // Bond user confirmation msg type.
#define GAP_MSG_LE_BOND_JUST_WORK OxO0A // Bond user confirmation msg type.

2.1.4.2 GAP API Message

GAP APl message is defined in gap_callback_le.h. Each function-related message please refers to the API

comments.

[* GAP API message */

#define GAP_MSG_LE_MODIFY_WHITE_LIST 0x01 // response msg type for le_modify_white_list
#define GAP_MSG_LE_SET RAND_ADDR 0x02 // response msg type for le_set_rand_addr

#define GAP_MSG_LE_SET _HOST_CHANN_CLASSIF 0x03 // response msg type for le_set_host _chann_classif
#define GAP_MSG_LE_WRITE_DEFAULT DATA LEN 0x04 // response msg type for le_write_default_data len

#define GAP_MSG_LE_READ_RSSI 0x10 // response msg type for le_read_rssi

#define GAP_MSG_LE_SET DATA LEN 0x13 // response msg type for le_set data_len

#define GAP_MSG_LE_DATA LEN_CHANGE_INFO 0x14 // Notification msg type for data length changed
#define GAP_MSG_LE_CONN_UPDATE_IND 0x15 // Indication for le connection parameter update
#define GAP_MSG_LE_CREATE_CONN_IND 0x16 // Indication for create le connection

#define GAP_MSG_LE_PHY_UPDATE_INFO 0x17 // Indication for le phyical update information
#define GAP_MSG_LE_REMOTE_FEATS_INFO 0x19 // Information for remote device supported features
#define GAP_MSG_LE_BOND_MODIFY_INFO 0x20 // Notification msg type for bond modify

#define GAP_MSG_LE_SCAN_INFO 0x30 // Notification msg type for le scan

#define GAP_MSG_LE_ADV_UPDATE_PARAM 0x40 // response msg type for le_adv_update_param

2.1.5 APP Message Flow

APP message flow is shown in Figure 2-8. Mandatory steps are written in solid line box and optional steps are

written in dashed line box.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

SuZ REALTEK

AmebaD BLE Stack User Manual

Register app callback function
—>le_register_app_cb(app_gap_callback)

Register airplane mode callback function
—>gap_register_app_ch(app_gap_common_callback)

Register gaps characteristic writeable callback function
—>gatt_register_callback(gap_service_callback)

Create gap io message queue
—gap_start_bt_stack(evt_queue_handle, io_queue_handle,
MAX_NUMBER_OF_GAP_MESSAGE);

—_——

Register xxx service callback function
>xxx_add_service(app_profile_callback)
—>server_register_app_cb(app_profile_callback)

Register xxx client callback function
—>xxx_add_client(app_client_callback)
—>client_register_general_client_cb(app_client_callback)

—_—-

Receive message

—2o0s_msg_recv() || ——————

Gap handle message
gap_handle_msg(event)

App handle io message
—>app_handle_io_msg(io_msg)

end

Figure 2-8 APP Message Flow

1. Two methods of sending message to APP

1

2)

Callback function

Message queue

2. Initialization

1)

Register callback function

In this method, APP shall register callback function first. When an upstream message is sent to GAP

layer, GAP layer will call this callback function to handle message.

In this method, APP shall create a message queue first. When an upstream message is sent to GAP layer,

GAP layer will send the message into the queue from which APP loops to receive message.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

20

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

2)

To receive GAP APl messages, APP shall register app callback function by invoking le_register_app_ch()
function.

To receive vendor command messages, APP shall register app callback function by invoking
gap_register_app_cb() function.

To receive gaps characteristic write messages, APP shall register app callback function by invoking
gatt_register_callback() function.

If peripheral role APP contains services, for receiving server messages, APP shall register service
callback function through xxx_add_service() function and server_register_app_ch() function.

If central role APP contains clients, for receiving client messages, APP shall register client callback
function through xxx_add_client() function.

Create message queue

For receiving BT status messages, APP shall create 10 message queue through gap_start bt stack()

function.

3. Loop to receive message

App main task loops to receive messages. If received message is a 10 message, APP calls

app_handle_io_msg() function to handle this message in APP layer. Otherwise APP invokes gap_handle_msg()

function to handle this message in GAP layer.

4. Handle message

If message is sent by callback function, the function registered in initialization procedure shall handle this

message. If message is sent by message queue, the message shall be handled by another function.

2.2 GAP Initialization and Startup Flow

This section introduces how to configure LE gap parameters in app_le_gap_init() and gap internal startup flow.

2.2.1 GAP Parameters Initialization

GAP parameter initialization is fulfilled in main.c by modifying codes in function app_le_gap_init().

2.2.1.1 Configure Device Name and Device Appearance

Parameter types are defined in T_GAP_LE_PARAM_TYPE in gap_le.h.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

2.2.1.1.1 Device Name Configuration

Device Name Configuration is used to set the value of Device Name Characteristic in GAP Service of the device.
If Device Name is set in Advertising Data as well, the Device Name set in Advertising data should have the same

value with Device Name Characteristic in GAP Service; otherwise there may be an interoperability problem.
[** @brief GAP - Advertisement data (max size = 31 bytes, best kept short to conserve power) */
static const uint8_t adv_data[] = {

[* Flags */

0x02, [* length */

GAP_ADTYPE_FLAGS, /* type="Flags" */

GAP_ADTYPE_FLAGS LIMITED | GAP_ADTYPE FLAGS BREDR_NOT SUPPORTED,

[* Service */

0x03, [* length */

GAP_ADTYPE_16BIT_COMPLETE,

LO_WORD(GATT_UUID_SIMPLE_PROFILE),

HI_WORD(GATT_UUID_SIMPLE_PROFILE),

[* Local name */

0xOF, [* length */

GAP_ADTYPE_LOCAL_NAME_COMPLETE,

‘B, 'L,'E," P, E, R, P, H, E, 'R, 'A, 'L

I3
void app_le_gap_init(void)
{
/* Device name and device appearance */
uint8_t device_name[GAP_DEVICE_NAME_LEN] = "BLE_PERIPHERAL";
/* Set device name and device appearance */
le_set gap_param(GAP_PARAM_DEVICE_NAME, GAP_DEVICE_NAME_LEN, device_name);
}

Currently, the maximum length of Device Name character string that BT Stack supports is 40 bytes (including end

mark). If the string exceeds 40 bytes, it will be cut off.

#define GAP_DEVICE_NAME_LEN (39+1)//1< Max length of device name, if device name length
exceeds it, it will be truncated.

2.2.1.1.2 Device Appearance Configuration

It is used to set the value of Device Appearance Characteristic in GAP Service for the device. If Device
Appearance is also set in Advertising data, the Device Appearance set in Advertising data should have the same
value with Device Appearance Characteristic in GAP Service; otherwise there may be an interoperability problem.
Device Appearance is used to describe the type of a device, such as keyboard, mouse, thermometer, blood

pressure meter etc. Available values are defined in gap_le_types.h.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

22

7 U@ REALTEK AmebaD BLE Stack User Manual

[** @defgroup GAP_LE_APPEARANCE_VALUES GAP Appearance Values

*@f

*/
#define GAP_GATT_APPEARANCE_UNKNOWN 0
#define GAP_GATT_APPEARANCE_GENERIC PHONE 64
#define GAP_GATT_APPEARANCE_GENERIC COMPUTER 128
#define GAP_GATT_APPEARANCE_GENERIC_WATCH 192
#define GAP_GATT_APPEARANCE_WATCH _SPORTS WATCH 193

Sample code is shown as below.

[** @brief GAP - scan response data (max size = 31 bytes) */

static const uint8 t scan_rsp_data[] = {
0x03, [* length */
GAP_ADTYPE_APPEARANCE, [* type="Appearance" */
LO_WORD(GAP_GATT_APPEARANCE_UNKNOWN),
HI_WORD(GAP_GATT_APPEARANCE_UNKNOWN),

j2
void app_le_gap_init(void)
{
/* Device name and device appearance */
uint16 t appearance = GAP_GATT_APPEARANCE_UNKNOWN;
[* Set device name and device appearance */
le_set gap_param(GAP_PARAM_APPEARANCE, sizeof(appearance), &appearance);
}

2.2.1.2 Configure Advertising Parameters

Advertising parameter types are defined in T_LE_ADV_PARAM_TYPE in gap_adv.h.

Advertising parameters which can be customized are listed below:
void app_le_gap_init(void)
{
/* Advertising parameters */
uint8 t adv_evt type = GAP_ADTYPE_ADV_IND;
uint8 t adv_direct_type = GAP_REMOTE_ADDR_LE PUBLIC;
uint8_t adv_direct_addr[GAP_BD_ADDR_LEN] = {0};
uint8_t adv_chann_map = GAP_ADVCHAN_ALL;
uint8_t adv_filter_policy = GAP_ADV_FILTER_ANY;
uintl6 tadv_int_ min = DEFAULT ADVERTISING INTERVAL _MIN;
uintl6 tadv_int_max = DEFAULT_ADVERTISING_INTERVAL_MAX;

[* Set advertising parameters */

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

23

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

le_adv_set param(GAP_PARAM_ADV_EVENT TYPE, sizeof(adv_evt_type), &adv_ewt_type);

le_adv_set param(GAP_PARAM_ADV_DIRECT ADDR_TYPE, sizeof(adv_direct_type), &adv_direct_type);
le_adv_set param(GAP_PARAM_ADV_DIRECT_ADDR, sizeof(adv_direct_addr), adv_direct_addr);

le_adv_set param(GAP_PARAM_ADV_CHANNEL_ MAP, sizeof(adv_chann_map), &adv_chann_map);
le_adv_set_param(GAP_PARAM_ADV_FILTER_POLICY, sizeof(adv_filter_policy), &adv_filter_policy);
le_adv_set param(GAP_PARAM_ADV_INTERVAL_MIN, sizeof(adv_int_min), &adv_int_min);

le_adv_set param(GAP_PARAM_ADV_INTERVAL_MAX, sizeof(adv_int_max), &adv_int_max);

le_adv_set param(GAP_PARAM_ADV_DATA, sizeof(adv_data), (void *)adv_data);

le_adv_set param(GAP_PARAM_SCAN_RSP_DATA, sizeof(scan_rsp_data), (void *)scan_rsp_data);

}

Parameter adv_evt_type defines type of advertising, and different types of advertising needs different parameters,

as listed in Table 2-1.
Table 2-1 Advertising Parameters Setting

GAP_ADTYPE_ GAP_ADTYPE_ GAP_ADTYPE_

GAP_ADTYPE_
adv_evt_type ADV_HDC _DIR ADV_SCAN_IN ADV_NONCON

ADV_IND

ECT_IND D N_IND
adv_int_min Y Ignore Y Y
adv_int_max Y Ignore Y
adv_direct_type Ignore Y Ignore Ignore
adv_direct_addr Ignore Y Ignore Ignore
adv_chann_map Y Y Y Y
adv_filter_policy Y Ignore Y Y
allow establish
Y Y N N

link

2.2.1.3 Configure Scan Parameters

Types of scan parameter are defined in T_LE_SCAN_PARAM_TYPE in gap_scan.h.

Scan parameters which can be customized are listed below:
void app_le_gap_init(void)
{
/* Scan parameters */
uint8 t scan_mode = GAP_SCAN_MODE_ACTIVE;
uint16 tscan_interval = DEFAULT _SCAN_INTERVAL,;
uint16_t scan_window = DEFAULT_SCAN_WINDOW;
uint8_t scan_filter_policy = GAP_SCAN_FILTER_ANY;
uint8 t scan_filter_duplicate = GAP_SCAN_FILTER_DUPLICATE_ENABLE;

GAP_ADTYPE_AD
V_LDC_DIRECT |

ND

< < < <

Ignore

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

24

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

/* Set scan parameters */

le_scan_set_param(GAP_PARAM_SCAN_MODE, sizeof(scan_mode), &scan_mode);

le_scan_set param(GAP_PARAM_SCAN_INTERVAL, sizeof(scan_interval), &scan_interval);

le_scan_set_param(GAP_PARAM_SCAN_WINDOW, sizeof(scan_window), &scan_window);

le_scan_set_param(GAP_PARAM_SCAN_FILTER_POLICY, sizeof(scan_filter_policy),
&scan_filter_policy);

le_scan_set param(GAP_PARAM_SCAN _FILTER DUPLICATES, sizeof(scan_filter_duplicate),
&scan_filter_duplicate);

}

Parameter Description:

1. scan_mode - T_GAP_SCAN_MODE

2. scan_interval - Scan Interval, range: 0x0004 to 0x4000 (units of 625us)

3. scan_window - Scan window, range: 0x0004 to 0x4000 (units of 625us)

4. scan_filter policy -T_GAP_SCAN_FILTER_POLICY

5. scan_filter_duplicate - T_GAP_SCAN_FILTER_DUPLICATE
Determine whether to filter duplicated advertising data. When the parameter scan_filter_policy is set to
GAP_SCAN_FILTER_DUPLICATE_ENABLE, the duplicated advertising data will be filtered in the stack,

and will not report to application.

2.2.1.4 Configure Bond Manager Parameters

A part of parameter types are defined in T_GAP_PARAM_TYPE in gap.h.
The others are defined in T_LE_BOND_PARAM_TYPE in gap_bond_le.h.

Bond manager parameters which can be customized are listed below:
void app_le_gap_init(void)
{
[* GAP Bond Manager parameters */
uint8 t auth_pair_mode = GAP_PAIRING_MODE_PAIRABLE;
uint16 tauth_flags = GAP_AUTHEN_BIT BONDING FLAG;
uint8 t auth_io_cap = GAP_IO_CAP_NO_INPUT_NO_OUTPUT;
uint8 t auth_oob = false;
uint8 t auth use_ fix_passkey = false;
uint32_t auth_fix_passkey = 0;
uint8 t auth_sec req_enable = false;
uint16 tauth_sec req_flags = GAP_AUTHEN BIT BONDING_FLAG,;
[* Setup the GAP Bond Manager */
gap_set_param(GAP_PARAM_BOND_PAIRING_MODE, sizeof(auth_pair_mode), &auth_pair_mode);
gap_set_param(GAP_PARAM_BOND_AUTHEN_REQUIREMENTS_FLAGS, sizeof(auth_flags), &auth_flags);

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

}

gap_set_param(GAP_PARAM_BOND_IO_CAPABILITIES, sizeof(auth_io_cap), &auth_io_cap);

gap_set_param(GAP_PARAM_BOND_OOB_ENABLED, sizeof(auth_oob), &auth_oob);

le_bond_set param(GAP_PARAM BOND_FIXED PASSKEY, sizeof(auth_fix_passkey), &auth_fix_passkey);

le_bond_set param(GAP_PARAM_BOND_FIXED_PASSKEY_ ENABLE, sizeof(auth_use_fix_passkey),
&auth_use_fix_passkey);

le_bond_set param(GAP_PARAM_BOND_SEC REQ ENABLE, sizeof(auth_sec req_enable),
&auth_sec_req_enable);

le_bond_set param(GAP_PARAM_BOND_SEC REQ REQUIREMENT, sizeof(auth_sec req_flags),
&auth_sec_req_flags);

Parameter Description:

1.

auth_pair_mode - Determine whether the device can be paired in current status.

* GAP_PAIRING_MODE_PAIRABLE: the device can be paired,

* GAP_PAIRING_MODE_NO_PAIRING: the device cannot be paired.

auth_flags - A bit field that indicates the requested security properties.

* GAP_AUTHEN_BIT_NONE

* GAP_AUTHEN_BIT_BONDING_FLAG

* GAP_AUTHEN_BIT_MITM_FLAG

+ GAP_AUTHEN BIT _SC FLAG

+ GAP_AUTHEN_ BIT _FORCE_BONDING FLAG

* GAP_AUTHEN BIT_SC ONLY_FLAG

auth_io_cap - T_GAP_IO_CAP, indicate 1/0O capacity of the device.

auth_oob - Indicate whether OOB is enabled.

e true : set OOB flag

» false : not set OOB flag

auth_use fix_passkey - Indicate whether a random passkey or fixed passkey will be used if pairing mode is
passkey entry and the local device needs to generate a passkey.

* true : use fixed passkey

» false : use random passkey

auth_fix_passkey - The default value for passkey is used during pairing, which is valid when
auth_use_fix_passkey is true.

auth_sec req_enable - Determine whether to send SMP security request when connected.

auth_sec_req_flags - A bit field that indicates the requested security properties.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

26

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

2.2.1.5 Configure Other Parameters

2.2.1.5.1 Configure GAP_PARAM_SLAVE_INIT_GATT_MTU_REQ

void app_le_gap_init(void)

{
uint8 t slave_init_mtu_req = false;
le_set gap_param(GAP_PARAM_SLAVE_INIT _GATT_MTU_REQ, sizeof(slave_init_mtu_req),
&slave_init_mtu_req);
¥

This parameter is only applied to peripheral role. This parameter determines whether to send exchange MTU

request when connected.

2.2.2 GAP Startup Flow

1. Initialize GAP in main()

int main(void)

{
le_gap_init(APP_MAX_LINKS);
app_le_gap_init();
app_le_profile_init();

}

* le_gap_init() - Initialize GAP and set link number
* app_le_gap_init() - GAP Parameters Initialization
* app_le profile_init() - Initialize GATT Profiles

2. Start BT stack in app task

void app_main_task(void *p_param)

{
uint8_t event;
0s_msg_queue_create(&io_queue_handle, MAX_NUMBER_OF_I0_MESSAGE, sizeof(T_IO_MSG));
0s_msg_queue_create(&evt_queue_handle, MAX_NUMBER_OF EVENT MESSAGE, sizeof(uint8_t));
gap_start_bt_stack(evt_queue_handle, io_queue_handle, MAX_ NUMBER_OF GAP_MESSAGE);

}

APP needs to call gap_start bt stack() to start BT stack and start GAP initialization flow.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

27

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

2.3 BLE GAP Message

2.3.1 Overview

This chapter describes the BLE GAP Message Module. The gap message type definitions and message data
structures are defined in gap_msg.h. GAP message can be divided into three types:
* Device State Message
* Connection Related Message
* Authentication Related Message
BLE GAP Message process flow:
1. APP can call gap_start_bt stack() to initialize the BLE gap message module. The initialization codes are

given below:

void app_main_task(void *p_param)

{
uint8_t event;
0s_msg_queue_create(&io_queue_handle, MAX_NUMBER_OF_I0_MESSAGE, sizeof(T_IO_MSG));
0s_msg_queue_create(&evt_queue_handle, MAX_NUMBER_OF EVENT MESSAGE, sizeof(uint8_t));
gap_start_bt_stack(evt_queue_handle, io_queue_handle, MAX_NUMBER_OF_ GAP_MESSAGE);

}

2. GAP layer sends the gap message to io_queue_handle. App task receives the gap messages and call

app_handle_io_msg() to handle.(event: EVENT_IO_TO_APP, type: I0O_MSG_TYPE_BT_STATUS)

void app_main_task(void *p_param)

{
while (true)
{
if (0s_msg_recv(evt_queue_handle, &event, OxFFFFFFFF) == true)
{
if (event == EVENT_IO_TO_APP)
{
T 10_MSG io_msg;
if (0s_msg_recv(io_queue_handle, &io_msg, 0) == true)
{
app_handle_io_msg(io_msg);
}
}
}

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

28

i, REALTEK

AmebaD BLE Stack User Manual

}
}

3. The gap messages handler function are given below:

void app_handle_io_msg(T_IO_MSG io_msg)
{
uintl6 t msg_type = io_msg.type;
switch (msg_type)
{
case IO MSG_TYPE BT STATUS:
{
app_handle_gap_msg(&io_msg);
}
break;
default:
break;

¥
void app_handle_gap_msg(T_IO_MSG *p_gap_msQ)

{
T _LE_GAP_MSG gap_msg;
uint8_t conn_id;

memcpy(&gap_msg, &p_gap_msg->u.param, sizeof(p_gap_msg->u.param));

APP_PRINT_TRACE1("app_handle_gap_msg: subtype %d", p_gap_msg->subtype);

switch (p_gap_msg->subtype)

app_handle_dev_state evt(gap_msg.msg_data.gap_dev_state _change.new_state,

gap_msg.msg_data.gap_dev_state change.cause);

{

case GAP_MSG _LE DEV_STATE_CHANGE:
{
}
break;

}

2.3.2 Device State Message

2.3.2.1 GAP_MSG_LE_DEV_STATE_CHANGE

This message is used to inform GAP Device State (T_GAP_DEV_STATE). GAP device state contains five

sub-states:

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

* gap_init_state : GAP Initial State

* gap_adv_state : GAP Advertising State

* gap_adv_sub_state: GAP Advertising Sub State, this state is only applied to the situation that
gap_adv_state is GAP_ADV_STATE_IDLE.

* gap_scan_state : GAP Scan State

* gap_conn_state : GAP Connection State

Message data structure is T_GAP_DEV_STATE_CHANGE.

/** @brief Device State.*/
typedef struct
{
uint8_t gap_init_state: 1; /1< @ref GAP_INIT_STATE
uint8 t gap_adv_sub_state: 1; //I< @ref GAP_ADV_SUB STATE
uint8 t gap_adv_state: 2; //!< @ref GAP_ADV_STATE
uint8 t gap_scan_state: 2; //'< @ref GAP_SCAN_STATE
uint8_t gap_conn_state: 2; //!< @ref GAP_CONN_STATE
} T_GAP_DEV_STATE;

[** @brief The msg_data of GAP_MSG LE _DEV_STATE_CHANGE.*/
typedef struct

{
T _GAP_DEV_STATE new._state;

uint16 t cause;
} T_GAP_DEV_STATE_CHANGE;
The sample codes are given as below:
void app_handle_dev_state_evt(T_GAP_DEV_STATE new_state, uint16_t cause)

{
APP_PRINT_INFO4("app_handle_dev_state evt: init state %d, adv state %d, scan state %d, cause 0x%x",
new._state.gap_init_state, new_state.gap_adv_state,
new_state.gap_scan_state, cause);
if (gap_dev_state.gap_init_state = new_state.gap_init_state)

{
if (new_state.gap_init_state == GAP_INIT_STATE_STACK READY)
{
APP_PRINT_INFOO("GAP stack ready");
}
}

if (gap_dev_state.gap_scan_state != new_state.gap_scan_state)
{
if (new_state.gap_scan_state == GAP_SCAN_STATE_IDLE)

{
APP_PRINT_INFOO("GAP scan stop");

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

}
else if (new_state.gap_scan_state == GAP_SCAN_STATE_SCANNING)
{
APP_PRINT _INFOO("GAP scan start");
}
}
if (gap_dev_state.gap_adv_state != new_state.gap_adv_state)
{
if (new_state.gap_adv_state == GAP_ADV_STATE_IDLE)
{
if (new_state.gap_adv_sub_state == GAP_ADV_TO_IDLE_CAUSE_CONN)
{
APP_PRINT_INFOO("GAP adv stoped: because connection created");
}
else
{
APP_PRINT_INFOO("GAP adv stoped");
}
}
else if (new_state.gap_adv_state == GAP_ADV_STATE_ADVERTISING)
{
APP_PRINT_INFOO("GAP adv start");
}
}

gap_dev_state = new_state;

2.3.3 Connection Related Message

2.3.3.1 GAP_MSG_LE_CONN_STATE_CHANGE

This message is used to inform link state (T_GAP_CONN_STATE).
Message data structure is T_GAP_CONN_STATE_CHANGE.

The sample codes are given as below:
void app_handle_conn_state_evt(uint8_t conn_id, T_GAP_CONN_STATE new_state, uint16_t disc_cause)
{
APP_PRINT _INFO4("app_handle_conn_state_evt: conn_id %d old_state %d new_state %d, disc_cause 0x%x",
conn_id, gap_conn_state, new_state, disc_cause);
switch (new_state)

{
case GAP_CONN_STATE_DISCONNECTED:

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

31

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

{
if (disc_cause !'= (HCI_ERR | HCI_ERR_REMOTE_USER_TERMINATE))
&& (disc_cause != (HCI_ERR | HCI_ERR_LOCAL_HOST_TERMINATE)))
{
APP_PRINT_ERROR1("app_handle_conn_state_evt: connection lost cause 0x%x", disc_cause);
}
le_adv_start();
}
break;
case GAP_CONN_STATE_CONNECTED:
{
}
break;
default:
break;

}

gap_conn_state = new_state;

2.3.3.2 GAP_MSG_LE_CONN_PARAM_UPDATE

This message is used to inform status of connection parameter update procedure.
Update state contains three sub-states:

* GAP_CONN_PARAM_UPDATE_STATUS PENDING: If local device calls le_update_conn_param() to
update connection parameter, GAP Layer will send this status message when connection parameter
update request succeeded and connection update complete event does not notify.

* GAP_CONN_PARAM_UPDATE_STATUS SUCCESS: Update succeeded.

* GAP_CONN_PARAM_UPDATE_STATUS FAIL: Update failed, parameter cause denotes the failure
reason.

Message data structure is T_GAP_CONN_PARAM_UPDATE.

The sample codes are given below:
void app_handle_conn_param_update_evt(uint8 t conn_id, uint8_t status, uint16 t cause)

{

switch (status)

{
case GAP_CONN_PARAM_UPDATE_STATUS_SUCCESS:

break;
case GAP_CONN_PARAM_UPDATE_STATUS FAIL:

Copyright Realtek Semiconductor Corporation.

All Rights Reserved. 32

i, REALTEK

AmebaD BLE Stack User Manual

break;
case GAP_CONN_PARAM_UPDATE_STATUS PENDING:

2.3.3.3 GAP_MSG_LE_CONN_MTU_INFO

This message is used to inform that exchange MTU procedure is completed.
Message data structure is T_GAP_CONN_MTU_INFO.
The sample codes are given below:

void app_handle_conn_mtu_info_ewt(uint8 t conn_id, uint16_t mtu_size)

{

APP_PRINT_INFO2("app_handle_conn_mtu_info_ewt: conn_id %d, mtu_size %d", conn_id, mtu_size);

2.3.4 Authentication Related Message

The relationship of pairing method and authentication message is shown in Table 2-2.

Table 2-2 Authentication Related Message

Pairing Method Message

Just Works GAP_MSG_LE_BOND_JUST WORK

Numeric Comparison GAP_MSG_LE_BOND_USER_CONFIRMATION
passkey Entry GAP_MSG_LE_BOND_PASSKEY_INPUT

GAP_MSG_LE_BOND_PASSKEY_DISPLAY

2.3.4.1 GAP_MSG_LE_AUTHEN_STATE_CHANGE

This message indicates the new authentication state.

* GAP_AUTHEN_STATE_ STARTED : Authentication started.

* GAP_AUTHEN_STATE _COMPLETE: Authentication completed,

authentication result.
Message data structure is T_GAP_AUTHEN_STATE.

The sample codes are given as below:

void app_handle_authen_state_evt(uint8_t conn_id, uint8_t new_state, uint16_t cause)

{

parameter cause denotes the

APP_PRINT_INFO2("app_handle_authen_state_evt:conn_id %d, cause 0x%x", conn_id, cause);

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

switch (new_state)

{
case GAP_ AUTHEN_STATE STARTED:
{
APP_PRINT_INFOO("app_handle_authen_state evt: GAP_ AUTHEN_STATE _STARTED");
}
break;
case GAP_ AUTHEN_STATE _COMPLETE:
{
if (cause == GAP_SUCCESS)
{
APP_PRINT_INFOO("app_handle_authen_state _evt: GAP_AUTHEN_STATE_COMPLETE pair
success™);
}
else
{
APP_PRINT _INFOO("app_handle_authen_state evt: GAP_AUTHEN_STATE_COMPLETE pair
failed");
}
}
break;
default:
break;
}

2.3.4.2 GAP_MSG_LE_BOND_PASSKEY_DISPLAY

This message is used to indicate that the pairing mode is Passkey Entry.

Passkey is displayed at local device, and the same key will be input at the remote device. Upon receiving the
message, APP can display the passkey at its Ul terminal (how to handle the passkey depends on APP). APP also
needs to call le_bond_passkey display_confirm() to confirm whether to pair with remote device.

Message data structure is T_GAP_BOND_PASSKEY _DISPLAY.

The sample codes are given below:
void app_handle_gap_msg(T_IO_MSG *p_gap_msg)

case GAP_MSG_LE_BOND_PASSKEY_DISPLAY:
{
uint32_t display_value = 0;
conn_id = gap_msg.msg_data.gap_bond_passkey_display.conn_id;
le_bond_get display key(conn_id, &display_value);

Copyright Realtek Semiconductor Corporation.

All Rights Reserved. 34

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

APP_PRINT _INFO1("GAP_MSG_LE BOND_PASSKEY_DISPLAY:passkey %d", display_value);
le_bond_passkey display_confirm(conn_id, GAP_CFM_CAUSE_ACCEPT);

}

break;

2.3.4.3 GAP_MSG_LE_BOND_PASSKEY_INPUT

This message is used to indicate that the pairing mode is Passkey Entry.

Passkey is displayed in remote device, and the same key will be inputted at the local device. Upon receiving the
message, APP can call le_bond_passkey_input_confirm() to input key and confirm whether to pair with remote
device.

Message data structure is T_GAP_BOND_PASSKEY _INPUT.

The sample codes are given below:

void app_handle_gap_msg(T_IO_MSG *p_gap_msQ)

{
case GAP_MSG_LE_BOND_PASSKEY_INPUT:
{
uint32_t passkey = 888888;
conn_id = gap_msg.msg_data.gap_bond passkey_input.conn_id;
APP_PRINT_INFO1("GAP_MSG_LE_BOND_PASSKEY_INPUT: conn_id %d", conn_id);
le_bond_passkey_input_confirm(conn_id, passkey, GAP_CFM_CAUSE_ACCEPT);
}
break;
}

2.3.4.4 GAP_MSG_LE_BOND_USER_CONFIRMATION

This message is used to indicate that the pairing mode is Numeric Comparison.

The keys are displayed at both local device and remote device, and user needs to check whether the keys are the
same. APP needs to call le_bond_user_confirm() to confirm whether to pair with remote device.

Message data structure is T_GAP_BOND_USER_CONF.

The sample codes are given below:
void app_handle_gap_msg(T_IO_MSG *p_gap_msQ)

case GAP_MSG_LE_BOND_USER_CONFIRMATION:
{

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

35

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

uint32_t display_value = 0;
conn_id = gap_msg.msg_data.gap_bond_user_conf.conn_id;
le_bond_get display_key(conn_id, &display_value);
APP_PRINT_INFO1("GAP_MSG_LE_BOND_USER_CONFIRMATION: passkey %d",
display_value);
le_bond_user_confirm(conn_id, GAP_CFM_CAUSE_ACCEPT);
}

break;

2.3.4.5 GAP_MSG_LE_BOND_JUST WORK

This message is used to indicate that the pairing mode is Just Work.
APP needs to call le_bond_just_work_confirm() to confirm whether to pair with remote device.
Message data structure is T_GAP_BOND_JUST_WORK_CONF.

The sample codes are given below:
void app_handle_gap_msg(T_IO_MSG *p_gap_msQ)

{
case GAP_MSG_LE_BOND_JUST_WORK:
{
conn_id = gap_msg.msg_data.gap_bond_just_work_conf.conn_id;
le_bond_just work_confirm(conn_id, GAP_CFM_CAUSE_ACCEPT);
APP_PRINT_INFOO("GAP_MSG_LE_BOND_JUST _WORK");
}
break;
}

2.4 BLE GAP Callback

This section introduces the BLE GAP Callback. This registered callback function is used by BLE GAP Layer to
send messages to APP.

Different from BLE GAP Message, the Callback function is directly called on the GAP layer, so it is not
recommended to perform any time-consuming operation in the App Callback function. Any time-consuming
operation will keep any underlying process waiting and suspended, which may cause exception in some cases. If
Application does need to perform a time-consuming operation immediately after receiving a message from GAP
Layer, it is recommended to send this message to event queue in Application through the App Callback function
before handling by Application. In such case, App Callback function will terminate after sending message to the

queue, so this operation will not keep underlying process waiting.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

r:;&q% REAI_TEK AmebaD BLE Stack User Manual
Usage of BLE GAP Callback in Application consists of the following steps:

1. Register the callback function:
void app_le_gap_init(void)

le_register_app_cb(app_gap_callback);
}
2. Handle the GAP callback messages:
T_APP_RESULT app_gap_callback(uint8_t cb_type, void *p_ch_data)
{
T _APP_RESULT result = APP_RESULT_SUCCESS;
T LE CB DATA*p_data=(T_LE_CB_DATA *)p_ch_data;
switch (cb_type)

{
case GAP_MSG_LE_DATA LEN_CHANGE_INFO:
APP_PRINT_INFO3("GAP_MSG_LE_DATA LEN_CHANGE_INFO: conn_id %d, tx octets 0x%xX,
max_tx_time 0x%x",
p_data->p_le data_len_change_info->conn_id,
p_data->p_le data len_change info->max_tx_octets,
p_data->p_le data_len_change_info->max_tx_time);
break;
}

2.4.1 BLE GAP Callback Message Overview

This section introduces GAP callback messages. GAP callback message type and message data are defined in
gap_callback_le.h.

Most of interfaces provided by GAP Layer are asynchronous, so GAP Layer uses the callback function to send
response.

For example, APP calls le_read_rssi() to read RSSI, and return value is GAP_CAUSE_SUCCESS that means
sending request successfully. Then application needs to wait GAP_MSG_LE_READ_RSSI to get the result.
Detailed BLE GAP Message information is listed as below:

1. gap_le.h Related Messages

Table 2-3 gap_le.h Related Messages

Callback type(cb_type) Callback data(p_cb_data) Reference API
T_LE_MODIFY_WHITE_LIST_RSP _ N

GAP_MSG_LE_MODIFY_WHITE_LIST i o le_modify_white_list
*p_le_modify_white_list_rsp;

GAP_MSG_LE_SET_RAND_ADDR T_LE_SET_RAND_ADDR_RSP le_set_rand_addr

Copyright Realtek Semiconductor Corporation.

All Rights Reserved. 37

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

*p_le_set_rand_addr_rsp;

GAP_MSG_LE_SET HOST CHANN_CL T_LE SET_HOST_CHANN_CLASSIF le_set _host_chann_cla
ASSIF RSP *p_le_set_host_chann_classif _rsp; ssif

2. gap_conn_le.h Related Messages
Table 2-4 gap_conn_le.h Related Messages
Callback type(cb_type) Callback data(p_cb_data) Reference API

T LE_READ_RSSI_RSP)
GAP_MSG_LE_READ_RSSI . le_read_rssi
- - - *p_le_read_rssi_rsp; - -
T LE_SET _DATA LEN_RSP
GAP_MSG_LE_SET DATA LEN le_set data len
- - -~ - *p_le_set_data_len_rsp; - - T

T_LE_DATA_LEN_CHANGE_INFO
GAP_MSG_LE_DATA_LEN_CHANGE_INFO .
- - - - - - *p_le_data_len_change_info;

T_LE_CONN_UPDATE_IND
*p_le_conn_update_ind;
T_LE_CREATE_CONN_IND
*p_le_create_conn_ind,;

T _LE_PHY_UPDATE_INFO
*p_le_phy_update_info;

T LE REMOTE_FEATS_INFO
*p_le_remote_feats_info;

1) GAP_MSG_LE_DATA LEN_CHANGE_INFO

GAP_MSG_LE_CONN_UPDATE_IND

GAP_MSG_LE_CREATE_CONN_IND

GAP_MSG_LE_PHY_UPDATE_INFO

GAP_MSG_LE_REMOTE_FEATS_INFO

This message notifies the Application of a change to either the maximum Payload length or the maximum
transmission time of packets in either direction in Link Layer.

2) GAP_MSG_LE_CONN_UPDATE_IND
This message is only applied to central role. When the remote Bluetooth device requests connection
parameter update, GAP Layer will send this message by callback function and check the return value. Thus,

APP can return APP_RESULT_ACCEPT to accept the parameter or return APP_RESULT_REJECT to reject.
T_APP_RESULT app_gap_callback(uint8_t cb_type, void *p_cb_data)

case GAP_MSG_LE _CONN_UPDATE_IND:

APP_PRINT _INFO5("GAP_MSG_LE_CONN_UPDATE_IND: conn_id %d, conn_interval _max 0x%oX,
conn_interval_min 0x%x, conn_latency 0x%x,supervision_timeout 0x%x",
p_data->p_le_conn_update_ind->conn_id,
p_data->p_le_conn_update_ind->conn_interval _max,
p_data->p_le_conn_update_ind->conn_interval_min,
p_data->p_le conn_update_ind->conn_latency,
p_data->p_le_conn_update_ind->supervision_timeout);

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

38

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

[* if reject the proposed connection parameter from peer device, use APP_RESULT_REJECT. */
result = APP_RESULT_ACCEPT;
break;

3) GAP_MSG_LE_CREATE_CONN_IND
This message is only applied to peripheral role. It is used by APP to decide whether to establish a connection.
When the remote central device initiates connection, GAP Layer doesn't send this message by default and
accepts this connection.
If APP wants to enable this function, GAP_PARAM_HANDLE CREATE_CONN_IND must be set to true.

The sample codes are given below:
void app_le_gap_init(void)

{
uint8_t handle_conn_ind = true;
le_set gap_param(GAP_PARAM_HANDLE_ CREATE_CONN_IND, sizeof(handle_conn_ind),
&handle_conn_ind);
¥
T_APP_RESULT app_gap_callback(uint8_t cb_type, void *p_ch_data)
{
case GAP_MSG _LE CREATE _CONN_IND:
[* if reject the connection from peer device, use APP_RESULT REJECT. */
result = APP_RESULT ACCEPT;
break;
}

4) GAP_MSG_LE_PHY_UPDATE_INFO
This message is used to indicate that the Controller has switched the transmitter PHY or receiver PHY in use.
5) GAP_MSG_LE_REMOTE_FEATS_INFO
This message is used to indicate the completion of the process that the Controller obtains the features used on
the connection and the features that the remote Bluetooth device supports.
3. gap_bond_le.h Related Messages
Table 2-5 gap_bond_le.h Related Messages
Callback type(cb_type) Callback data(p_cb_data) Reference API

T_LE_BOND_MODIFY_INFO
GAP_MSG_LE_BOND_MODIFY_INFO - -
- - - - - *p_le_bond_modify_info;
1) GAP_MSG_LE_BOND_MODIFY_INFO
This message is used to notify app that bond information has been modified. For detailed information please
refers to LE Key Manager.

4. gap_scan.h Related Messages

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

39

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

Table 2-6 gap_scan.h Related Messages
Callback type(cb_type) Callback data(p_cb_data) Reference API

T_LE_SCAN_INFO
GAP_MSG_LE_SCAN_INFO N . le_scan_start
p_le_scan_info;

1) GAP_MSG_LE_SCAN_INFO
Scan state is GAP_SCAN_STATE_SCANNING When BT stack receives advertising data or scan response
data, GAP Layer will use this message to inform application.
5. gap_adv.h Related Messages
Table 2-7 gap_adv.h Related Messages
Callback type(cb_type) Callback data(p_cb_data) Reference API

T LE_ADV_UPDATE_PARAM_RSP
GAP_MSG_LE_ADV_UPDATE_PARAM le_adv_update_param
*p_le_adv_update_param_rsp;

2.5 BLE GAP Use Case

This chapter is used to show how to use LE GAP interfaces. This document is to give some of typical use cases.

2.5.1 GAP Service Characteristic Writeable

Device name characteristic and device appearance characteristic of GAP service have an optional writable
property. The writable property is closed by default. APP can call gaps_set parameter() to set
GAPS_PARAM_APPEARANCE_PROPERTY and GAPS PARAM_DEVICE_NAME_PROPERTY to configure
writeable property.

1. Writeable Property Configuration

void app_le_gap_init(void)

{
uint8_t appearance_prop = GAPS_PROPERTY_WRITE _ENABLE;
uint8 t device_name_prop = GAPS_PROPERTY_WRITE_ENABLE;
T _LOCAL_APPEARANCE appearance_local;
T LOCAL_NAME local_device_name;
if (flash_load_local_appearance(&appearance_local) == 0)

{
gaps_set_parameter(GAPS_PARAM_APPEARANCE, sizeof(uint16_t),
&appearance_local.local_appearance);
}
if (flash_load_local_name(&local_device_name) == 0)
{

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

40

i, REALTEK AmebaD BLE Stack

gaps_set_parameter(GAPS_PARAM_DEVICE_NAME, GAP_DEVICE_NAME_LEN,
local_device_name.local_name);
}
gaps_set_parameter(GAPS PARAM_APPEARANCE_PROPERTY, sizeof(appearance_prop),
&appearance_prop);
gaps_set_parameter(GAPS_PARAM_DEVICE_NAME_PROPERTY, sizeof(device_name_prop),
&device_name_prop);
gatt_register_callback(gap_service_callback);
}
2. GAP Service Callback Handler

APP needs to invoke gatt_register_callback() to register callback function. This callback function is used to handle

gap service messages.
T_APP_RESULT gap_service_callback(T_SERVER_ID service_id, void *p_para)
{
T _APP_RESULT result = APP_RESULT_SUCCESS;
T_GAPS_CALLBACK_DATA *p_gap_data= (T_GAPS_CALLBACK_DATA *)p_para;
APP_PRINT_INFO2("gap_service_callback conn_id = %d msg_type = %d\n", p_gap_data->conn_id,
p_gap_data->msg_type);
if (0_gap_data->msg_type == SERVICE_CALLBACK_TYPE_WRITE_CHAR_VALUE)
{

switch (p_gap_data->msg_data.opcode)

{
case GAPS WRITE_DEVICE_NAME:
{
T_LOCAL_NAME device_name;
memcpy(device_name.local_name, p_gap_data->msg_data.p_value,
p_gap_data->msg_data.len);
device_name.local_name[p_gap_data->msg_data.len] = 0;
flash_save local _name(&device _name);
}
break;
case GAPS_WRITE_APPEARANCE:
{
uint16_t appearance_val;
T_LOCAL_APPEARANCE appearance;
LE_ARRAY_TO_UINT16(appearance_val, p_gap_data->msg_data.p_value);
appearance.local_appearance = appearance_val;
flash_save_local_appearance(&appearance);
}
break;
default:
break;
}

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

41

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

}

return result;

}

APP needs to save device name and device appearance to Flash. Please refer to chapter Local Stack Information

Storage.

2.5.2 Local Static Random Address

Local address type that is used in advertising, scanning and connection is Public Address by default, and local
address type could be configured as Static Random Address.

1. Generation and storage of Random Address

APP may call le_gen_rand_addr() to generate random address for the first time, and save generated random
address to Flash. If random address has been saved in Flash, APP gets random address by loading from storage.
Then APP calls le_set_gap_param() with GAP_PARAM_RANDOM_ADDR to set random address.

2. Set ldentity Address

Stack uses public address as ldentity Address by default. APP needs to call le_cfg_local_identity _address() to
modify Identity Address to static random address. If configuration of Identity Address is incorrect, reconnection
could not be implemented after pairing.

3. Set local address type

Peripheral role or broadcaster role call le_adv_set _param() to configure local address type to use Static Random
Address. Central role or observer role call le_scan_set_param() to configure local address type to use Static

Random Address. Sample codes are listed as below:
void app_le_gap_init(void)

T _APP_STATIC_RANDOM_ADDR random_addr;

bool gen_addr = true;

uint8_t local_bd_type = GAP_LOCAL_ADDR_LE_RANDOM,;
if (app_load_static_random_address(&random_addr) == 0)

{
if (random_addr.is_exist == true)
{
gen_addr = false;
}
}
if (gen_addr)
{

if (le_gen_rand_addr(GAP_RAND_ADDR_STATIC, random_addr.bd_addr) == GAP_CAUSE_SUCCESS)
{

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

42

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

random_addr.is_exist = true;
app_save_static_random_address(&random_addr);

}

le_cfg_local _identity_address(random_addr.bd_addr, GAP_IDENT_ADDR_RAND);

le_set gap_param(GAP_PARAM_RANDOM_ADDR, 6, random_addr.bd_addr);

[lonly for peripheral,broadcaster

le_adv_set param(GAP_PARAM_ADV_LOCAL_ADDR_TYPE, sizeof(local_bd_type), &local_bd_type);
[lonly for central,observer

le_scan_set_param(GAP_PARAM_SCAN_LOCAL_ADDR_TYPE, sizeof(local_bd_type), &local_bd_type);

Central calls le_connect() function to configure local address type to use Static Random Address. Sample codes
are listed as below:
static T_USER_CMD_PARSE_RESULT cmd_condev(T_USER_CMD_PARSED_VALUE *p_parse_value)

cause = le_connect(GAP_PHYS_CONN_INIT_1M_BIT,
dev_list[dev_idx].bd_addr,
(T_GAP_REMOTE_ADDR_TYPE)dev_list[dev_idx].bd_type,
local_addr_type,
1000);

2.5.3 Physical (PHY) Setting

LE mandatory symbol rate is 1 mega symbol per second (Msym/s), where 1 symbol represents 1 bit therefore
supporting a bit rate of 1 megabit per second (Mb/s), which is referred to as the LE 1M PHY. An optional symbol
rate of 2 Msym/s may be supported, with a bit rate of 2 Mb/s, which is referred to as the LE 2M PHY. The 2
Msym/s symbol rate supports uncoded data only. LE 1M PHY and LE 2M PHY are collectively referred to as the
LE Uncoded PHYs™.
1. Set Default PHY

APP can specify its preferred values for the transmitter PHY and receiver PHY to be used for all subsequent

connections over the LE transport.
void app_le_gap_init(void)

{
uint8_t phys_prefer = GAP_PHYS PREFER_ALL;

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

43

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

uint8_t tx_phys_prefer = GAP_PHYS_PREFER_1IM_BIT | GAP_PHYS_PREFER_2M_BIT;

uint8_t rx_phys_prefer = GAP_PHYS_PREFER_1M_BIT | GAP_PHYS_PREFER_2M_BIT;
le_set_gap_param(GAP_PARAM_DEFAULT _PHYS_PREFER, sizeof(phys_prefer), &phys_prefer);

le_set gap_param(GAP_PARAM_DEFAULT TX PHYS PREFER, sizeof(tx_phys_prefer), &tx_phys_prefer);
le_set_gap_param(GAP_PARAM_DEFAULT_RX_PHYS_PREFER, sizeof(rx_phys_prefer), &rx_phys_prefer);

2. Read connection PHY type
After establishing connection successfully, APP can call le_get_conn_param() to get TX PHY and RX PHY

type.
void app_handle_conn_state_evt(uint8 t conn_id, T_GAP_CONN_STATE new._state, uintl6_t disc_cause)

switch (new_state)

{
case GAP_CONN_STATE_CONNECTED:

data_uart_print("Connected success conn_id %d\r\n", conn_id);

#if F_ BT _LE 5 0_SET PHY_SUPPORT
uint8_t tx_phy;
uint8_t rx_phy;
le_get_conn_param(GAP_PARAM_CONN_RX_PHY_TYPE, &rx_phy, conn_id);
le_get_conn_param(GAP_PARAM_CONN_TX_PHY_TYPE, &tx_phy, conn_id);
APP_PRINT_INFO2("GAP_CONN_STATE_CONNECTED: tx_phy %d, rx_phy %d", tx_phy,

rx_phy);
#endif
}
break;
}
3. Remote Features Info Check

After establishing connection successfully, BT stack will read remote features. GAP Layer will send
GAP_MSG_LE_REMOTE_FEATS_INFO to inform remote features. APP can check whether remote device

supports LE 2M PHY.
T_APP_RESULT app_gap_callback(uint8_t cb_type, void *p_ch_data)
{
T _APP_RESULT result = APP_RESULT_SUCCESS;
T LE CB DATA*p_data=(T_LE_CB_DATA *)p_ch_data;
switch (cb_type)
{
#if F BT LE 5 0 SET PHY_SUPPORT
case GAP_MSG _LE REMOTE_FEATS_INFO:
{

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

44

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

uint8_t remote_feats[8];
APP_PRINT _INFO3("GAP_MSG _LE REMOTE_FEATS_INFO: conn id %d, cause 0x%kx,
remote_feats %b",
p_data->p_le_remote_feats_info->conn_id,
p_data->p_le remote_feats info->cause,
TRACE_BINARY(8, p_data->p_le_remote feats info->remote_feats));
if (p_data->p_le_remote_feats_info->cause == GAP_SUCCESS)

{
memcpy(remote_feats, p_data->p_le_remote feats_info->remote_feats, 8);
if (remote_feats[LE_SUPPORT_FEATURES_MASK_ARRAY_INDEX1] &
LE SUPPORT FEATURES LE 2M_MASK BIT)
{
APP_PRINT_INFOO("GAP_MSG_LE_REMOTE_FEATS_INFO: support 2M");
}
}
}
break;
#endif
}
}
4. Set PHY

le_set_phy() is used to set the PHY preferences for the connection identified by conn_id. The Controller
might not be able to make the change (e.g. because the peer does not support the requested PHY) or may

decide that the current PHY is preferable.

static T_USER_CMD_PARSE_RESULT cmd_setphy(T_USER_CMD_PARSED_VALUE *p_parse_value)

{

uint8 t conn_id = p_parse_value->dw_param[0];

uint8_t all_phys;

uint8_t tx_phys;

uint8_t rx_phys;

T_GAP_PHYS_OPTIONS phy_options = GAP_PHYS_OPTIONS_CODED_PREFER_SS8;
T_GAP_CAUSE cause;

if (p_parse_value->dw_param[1] == 0)

{
all_phys = GAP_PHYS PREFER_ALL;
tx_phys = GAP_PHYS_PREFER_1M_BIT;
rx_phys = GAP_PHYS PREFER_ 1M BIT;

}

else if (p_parse_value->dw_param[1] == 1)

{

all_phys = GAP_PHYS_PREFER_ALL;
tx_phys = GAP_PHYS_PREFER_2M _BIT;
rx_phys = GAP_PHYS_PREFER_2M_BIT;

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

45

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

cause = le_set_phy(conn_id, all_phys, tx_phys, rx_phys, phy_options);
return (T_USER_CMD_PARSE_RESULT)cause;

PHY Update
GAP_MSG_LE_PHY_UPDATE_INFO is used to inform result of updating transmitter PHY or receiver PHY
used by the Controller.
T_APP_RESULT app_gap_callback(uint8 t cb_type, void *p_cb_data)
{
T _APP_RESULT result = APP_RESULT_SUCCESS;
T _LE_CB_DATA *p_data = (T_LE_CB_DATA *)p_cb_data;
switch (cb_type)
{
#if F BT LE 5 0 SET PHY_SUPPORT
case GAP_MSG_LE PHY UPDATE_INFO:
APP_PRINT_INFO4("GAP_MSG_LE PHY_UPDATE_INFO:conn_id %d, cause 0x%X, rx_phy %d,
tx_phy %d",
p_data->p_le phy_update_info->conn_id,
p_data->p_le phy_update_info->cause,
p_data->p_le_phy_update_info->rx_phy,
p_data->p_le phy_update_info->tx_phy);
break;
#endif
}

2.6 GAP Information Storage

The constants and functions prototype are defined in gap_storage_le.h.

Local stack and bond information are saved in FTL. More information on FTL can be found in FTL Introduction.

2.6.1 FTL Introduction

BT stack and user application use FTL as abstraction layer to save/load data in flash.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

46

SuZ REALTEK

AmebaD BLE Stack User Manual

2.6.1.1 FTL Layout

FTL

Local stack info storage
space
(T_LOCAL_NAME,T_LOCAL_AP
PEARANCE, T_LOCAL_IRK)

LE key storage space
(max_le_paired_device
default value 1)

Reserved

APP storage space

Figure 2-9 FTL Layout
FTL can be divided into four regions:
1. Local stack information storage space

1) range: 0x0000 - 0X004F

offset
0x0000

0x0050

Offset_reserved

2) This region is used to store local stack information including device name, device appearance and local

IRK. For more information please refers to Local Stack Information Storage.

2. LE key storage space
1) range: 0x0050 - (Offset_reserved — 1)

2) This region is used to store LE key information. For more information please refers to Bond Information

Storage.
3. APP storage space

1) APP can use this region to store information.

2.6.2 Local Stack Information Storage

2.6.2.1 Device Name Storage

Currently, the maximum length of device name character string which GAP layer suppotrs is 40 bytes (including

end mark).

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

47

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

flash_save local _name() function is used to save the local name to FTL.
flash_load local_name() function is used to load the local name from FTL.
If device name characteristic of GAP service is writeable, application can use this function to save the device

name. The sample codes are given in GAP Service Characteristic Writeable.

2.6.2.2 Device Appearance Storage

Device Appearance is used to describe the type of a device, such as keyboard, mouse, thermometer, blood
pressure meter etc.

flash_save_local_appearance() function is used to save the appearance to FTL.

flash_load_local_appearance() function is used to load the appearance from FTL.

If device appearance characteristic of GAP service is writeable, application can use this function to save the

device appearance. The sample codes are given in GAP Service Characteristic Writeable.

2.6.3 Bond Information Storage

2.6.3.1 Bonded Device Priority Manager

GAP layer implements bonded device priority management mechanism. Priority control block will be saved to
FTL. LE device has storage space and priority control block.
Key priority control block contains two parts:
* bond_num: Saved bonded devices number
* bond_idx array: Saved bonded devices index array. GAP layer can use bonded device index to search for
the start offset in FTL.
Priority manager consists of operations listed below:
1. Add a bond device
GAP LE API: Not provided, for internal use.

Bond_num Bond_idx[]
0 1 2 3
3 0 1 2
Add deVice 3 4 0 1 2 3

Figure 2-10 Add A Bond Device
2. Remove a bond device

GAP LE API: le_bond_delete_by idx() or le_bond_delete_by bd()

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

48

SuZ REALTEK

AmebaD BLE Stack User Manual

Bond_num Bond_idx[]
0 1 2

3 0

1

2

Remove device
1 2 0

Figure 2-11 Remove A Bond Device

3. Clear all bond devices
GAP LE API: le_bond_clear_all_keys()

Bond_num Bond_idx[]
0 1 2
3 0 1 2
Clear 0

Figure 2-12 Clear All Bond Devices

4. Set abond device high priority
GAP LE API: le_set_high_priority_bond()

Bond_num Bond_idx[]
0 1 2
3 0 1 2
Set device 0
high priority 3 1 2 0

Figure 2-13 Set A Bond Device High Priority

5. Get high priority device
The highest priority device is bond_idx[bond_num - 1].
GAP LE API: le_get_high_priority_bond()

Bond_num Bond_idx[]
0 1 2
3 0 1 2
Get high
priority device | 3 0 1 2

Figure 2-14 Get High Priority Device

6. Get low priority device
The lowest priority device is bond_idx[0].

GAP LE API: le_get_low_priority_bond()

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

Si4 REALTEK

AmebaD BLE Stack User Manual

Bond_num Bond_idx[]
0 1 2

3 0 1 2

Get low priority
device 3 0 1 2

Figure 2-15 Get Low Priority Device

A priority manager example is shown in Figure 2-16 :

Bond_num Bond_idx[]
0 1 2 3
0
| |
Add 0 1 o
| |
aa N W
| |
Add 2
3 (o] 1 2
| |
| |
Set O high
priority 3 1 2 0
| |
Add 3
4 g 2 (¢] 3
| |
Delete low
priority dev 3 2 0 3
| |
Add 1
4 2 (o] 3 1
| |
| 1
Low priority High priority

Figure 2-16 Priority Manager Example

2.6.3.2 BLE Key Storage

BLE Key information is stored in LE key storage space.

LE FTL layout is shown in Figure 2-17:

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

50

7 U@ REALTEK AmebaD BLE Stack User Manual

FTL

LE BOND PRIORITY

("[LE REMOTE BD
LOCAL LT!
REMOTE LTK
REMOTE IRK
LOCAL CSRK

; 0x0000 REMOTE CSRK
Local stack info storage CCCD DATA

SRace 7 [LE REMOTE BD
(T_LOCAL_NAME,T_LOCAL_AP LE LOCAL LTK

PEARANCE, T_LOCAL_IRK) LE REMOTE LTK
Index 1 < [LE REMOTE IRK
0x0050 LE LOCAL CSRK

LE REMOTE CSRK
LE key storage space LE CCCD DATA

(max_le_paired_device >' LE REMOTE BD
default value 1) LE LOCAL LTK

LE REMOTE LTK
ffset_reserved Index 2 < [LEREMOTE IRK
Reserved LE LOCAL CSRK
LE REMOTE CSRK
_|LE CCCD DATA

offset

Index 0 < |[L

APP storage space

Figure 2-17 LE FTL Layout
LE key storage space can be divided into two regions:
1. LE BOND PRIORITY: LE priority control block. For detailed information please refers to Bonded Device
Priority Manager.
2. Bonded device keys storage block: Device index 0, index 1 and so on.
* LE REMOTE BD: Save remote device address
* LE LOCAL LTK: Save local Long Term Key (LTK)
* LEREMOTE LTK: Save remote LTK
* LE REMOTE IRK: Save remote IRK
* LE LOCAL CSRK: Save local Connection Signature Resolving Key (CSRK)
* LE REMOTE CSRK: Save remote CSRK
* LE CCCD DATA: Save Client Characteristic Configuration declaration (CCCD) data

2.6.3.2.1 Configuration

The size of LE key storage space is related to the following two parameters:
1. LE Maximum Bonded Device Number

* Default value is 1.
2. Maximum CCCD Number

* Default value is 16.

2.6.3.2.2 LE Key Entry Structure

GAP layer use structure T_LE_KEY_ENTRY to manage bonded device.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

7 U@ REALTEK AmebaD BLE Stack User Manual

#define LE_KEY_STORE_REMOTE_BD_BIT 0x01
#define LE_KEY_STORE_LOCAL_LTK BIT 0x02
#define LE_KEY_STORE_REMOTE_LTK_BIT 0x04
#define LE_KEY_STORE_REMOTE_IRK_BIT 0x08
#define LE_KEY_STORE_LOCAL_CSRK_BIT 0x10
#define LE_KEY_STORE_REMOTE_CSRK_BIT 0x20
#define LE_KEY_STORE_CCCD_DATA BIT 0x40
#define LE_KEY_STORE_LOCAL_IRK BIT 0x80

[** @brief LE key entry */

typedef struct

{
bool is_used;
uint8_t idx;

uint16 t flags;
uint8 t local_bd_type;
uint8 t app_data;
uint8_t reserved[2];
T LE REMOTE_BD remote_hd;
T LE REMOTE_BD resolved_remote_bd;
} T_LE_KEY_ENTRY;
Parameter Description:
* is_used - Whether to use.
* idx - Device index. GAP layer can use idx to find out storage location in FTL.
» flags - LE Key Storage Bits, a bit field that indicates whether the key is existing.
* local_bd_type - Local address type used in pairing process. T_GAP_LOCAL_ADDR_TYPE
* remote_bd - Remote device address.

* resolved_remote_bd - Identity address of remote device.
2.6.3.2.3 LE Key Manager

When local device pairs with remote device or encrypts with bonded device, GAP layer will send

GAP_MSG_LE_AUTHEN_STATE_CHANGE to notify authentication state change.

void app_handle_authen_state evt(uint8 t conn_id, uint8 t new_state, uint16 t
cause)

APP_PRINT_INFO2("app_handle_authen_state_evt:conn_id %d, cause 0x%x", conn_id, cause);
switch (new_state)

{
case GAP_AUTHEN_STATE _STARTED:
{
APP_PRINT _INFOO("app_handle_authen_state evt: GAP_AUTHEN_STATE_STARTED");
}

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

52

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

break;
case GAP_AUTHEN_STATE_COMPLETE:
{
if (cause == GAP_SUCCESS)
{
APP_PRINT_INFOO("app_handle_authen_state_evt: GAP_AUTHEN_STATE_COMPLETE
pair success");
}
else
{
APP_PRINT_INFOO("app_handle_authen_state_evt: GAP_ AUTHEN_STATE_COMPLETE
pair failed");
}
}
break;
}
}
GAP_MSG_LE_BOND_MODIFY_INFO is used to notify app that bond information has been modified.
typedef struct
{

T_LE_BOND_MODIFY_TYPE type;
P_LE_KEY_ENTRY p_entry;
} T_LE_BOND_MODIFY_INFO;

T_APP_RESULT app_gap_callback(uint8_t cb_type, void *p_ch_data)
{
T _APP_RESULT result = APP_RESULT_SUCCESS;
T LE CB_DATA *p_data= (T_LE_CB_DATA *)p_cb_data;
switch (cb_type)
{
case GAP_MSG_LE_BOND_MODIFY_INFO:
APP_PRINT_INFO1("GAP_MSG_LE_BOND_MODIFY_INFO: type 0x%x",
p_data->p_le_bond_modify_info->type);
break;

Type of bond modification is defined as below:
typedef enum {

LE_BOND_DELETE,

LE_BOND_ADD,

LE_BOND_CLEAR,

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

53

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

LE_BOND_FULL,
LE_BOND_KEY_MISSING,

} T_LE_BOND_MODIFY_TYPE;

1.

LE_BOND DELETE
LE_BOND_DELETE message means bond information has been deleted. It will be triggered in following
conditions.

* Invoked le_bond_delete_by idx() function.

* Invoked le_bond_delete_by bd() function.

* The link encryption failed.

* Key storage space is full, and then information of the lowest priority bond will be deleted.
LE_BOND_ADD

LE BOND_ADD message means a new device is bonded. It will only be triggered at the first time of pairing
with remote device.

LE_BOND_CLEAR

LE_BOND_CLEAR message means all bond information has been deleted. It will only be triggered after
invoking le_bond_clear_all_keys() function.

LE_BOND_FULL

LE_BOND_FULL message means key storage space is full and this message will only be triggered when
parameter of GAP_PARAM_BOND_KEY_MANAGER is set to true. If so, GAP will not delete keys
automatically. Otherwise, GAP will first delete the lowest priority bond information and save current bond
information, then trigger LE_BOND_DELETE message.

LE_BOND _KEY_MISSING

LE_BOND_KEY_MISSING message means the link encryption is failed and the key is no longer valid. This
message will only be triggered when parameter of GAP_PARAM_BOND_KEY_MANAGER is set to true. If
so, GAP will not delete the key automatically. Otherwise, GAP will delete the key and trigger
LE_BOND_DELETE message.

2.6.3.2.4 BLE Device Priority Manager in GAP Layer

1.

Pair with a new device
1) Key storage space is not full
(1) GAP layer will add the bonded device to priority control block and send LE_BOND_ADD to APP.
This added device has highest priority.
2) Key storage space is full
(1) When GAP_PARAM_BOND_KEY_MANAGER is true, GAP layer will send LE_BOND_FULL to
APP.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

54

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

2.

(2) When GAP_PARAM_BOND_KEY_MANAGER is false, GAP layer will remove lowest priority
bonded device from priority control block and send LE_BOND_DELETE to APP. Then GAP layer
will add the bonded device to priority control block and send LE_BOND_ADD to APP. This added
device has highest priority.

Encryption with bonded device succeeds

GAP layer will set this bonded device to highest priority.

Encryption with bonded device fails

1) When GAP_PARAM BOND KEY MANAGER is true, GAP layer will send

LE_BOND_KEY_MISSING to APP.

2) When GAP_PARAM_BOND_KEY_MANAGER is false, GAP layer will remove the bonded device
from priority control block and send LE_BOND_DELETE to APP.

2.6.3.2.5 APIs

[* gap_storage le.h */

P LE KEY_ENTRY le_find key entry(uint8 t *bd addr, T GAP_REMOTE_ADDR_TYPE bd_type);
P _LE KEY_ENTRY le_find_key entry by idx(uint8 t idx);

uint8 tle_get bond dev_num(void);

P_LE_KEY_ENTRY le_get_low_priority_bond(void);

P_LE KEY_ENTRY le_get_high_priority _bond(void);

bool le_set_high_priority_bond(uint8_t *bd_addr, T_GAP_REMOTE_ADDR_TYPE bd_type);

bool le_resolve_random_address(uint8_t *unresolved_addr, uint8 t *resolved_addr,

T_GAP_IDENT_ADDR_TYPE *resolved_addr_type);

bool le_get cccd data(T_LE KEY _ENTRY *p_entry, T LE CCCD *p_data);

[* gap_bond_le.h */

void le_bond_clear_all_keys(void);

T_GAP_CAUSE le_bond_delete_by idx(uint8 t idx);

T_GAP_CAUSE le_bond_delete_by bd(uint8 t *bd_addr, T GAP_REMOTE_ADDR_TYPE bd_type);

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

55

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

3 GATT Profile

GATT Profile APIs based on GATT specification are provided in SDK. The implementation of GATT Based
Profile consists of two components: Profile-Server and Profile-Client.

Profile-Server is a public interface abstracted from implementation of server terminal of GATT Based Profile.
More information could be found in chapter BLE Profile Server.

Profile-Client is a public interface abstracted from implementation of client terminal of GATT Based Profile.
More information could be found in chapter BLE Profile Client.

GATT Profile Layer has been implemented in BT Lib, and provides interfaces to application. Header files are
provided in SDK.

GATT Profile header files directory:

component\common\bluetooth\realtek\sdk\board\amebad\inc\bluetooth\profile.

#m client

% server

&) gatth

.Q_‘l gatt_builtin_services.h
&) profile_client.h

i) profile server.h

Figure 3-1 GATT Profile Header Files

3.1 BLE Profile Server

3.1.1 Overview

Server is the device that accepts incoming commands and requests from the client and sends responses,
indications and notifications to a client. GATT profile defines how BLE devices transmit data between GATT
server and GATT client. Profile may contain one or more GATT services, service is a group of characteristics in
set, through which GATT server exposes its characteristics.

Profile Server exports APIs that user can use to implement a specific service.

Figure 3-2 shows the profile server hierarchy.

Content of profile involves profile server layer and specific service. Profile server layer above protocol stack
encapsulates interfaces for specific service to access protocol stack. So that, development of specific services does
not involve details of protocol stack process and becomes simpler and clearer. Specific service is implemented by

application layer which based on the profile server layer. The specific service consists of attribute value and

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

56

i, REALTEK

AmebaD BLE Stack User Manual

provides interfaces for application to transmit data.

application laver

GAP layer

specific service

profile server layer

protocol stack

Figure 3-2 Profile Server Hierarchy

3.1.2 Supported Profile and Service

Supported profile list is shown in Table 3-1.

Abbr.
GAP

PXP

ScPP

HTP

HRP

LNP

WSP

GLP

FMP

HOGP

Definition

Generic Access Profile

Proximity Profile

Scan Parameters Profile

Health Thermometer Profile

Heart Rate Profile

Location and Navigation Profile

Weight Scale Profile

Glucose Profile

Fine Me Profile

HID over GATT Profile

Table 3-1 Supported Profile List

GATT server
Server role shall support GAS(M)

Proximity Reporter role shall support
LLS(M), IAS(O), TPS(O)

Scan Server role shall support ScCPS(M)

Thermometer role shall

HTS(M), DIS(M)

support

Heart Rate Sensor role shall support
HRS(M), DIS(M)
LN Sensor role shall support LNS(M),
DIS(O), BAS(O)

Weight Scale role shall support
WSS(M), DIS(M), BAS(O)

Glucose Sensor role shall support
GLS(M), DIS(M)

Find Me Target role shall support
IAS(M)

HID Device shall support HIDS(M),
BAS(M), DIS(O), ScPS(O)

GATT client
client role has no claim

Proximity Monitor role

has no claim

Scan Client role has no
claim

Collector role has no

claim

Collector role has no

claim

Collector role has no

claim

Weight Scale role shall
support WSS(M),
DIS(M), BAS(O)
Collector
claim

role has no

Find Me Locator role has
no claim

Boot Host has no claim

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

57

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

Running Speed and Cadence RSC Sensor role shall support Collector role has no

RSCP . .
Profile RSCS(M), DIS(M) claim
cscp Cycling Speed and Cadence CSC Sensor role shall support Collector role has no
Profile CSCS(M), DIS(M) claim
IPSP Internet Protocol Support Profile Node role shall support IPSS(M) Router role has no claim
NOTE:

M: mandatory
O: optional

Supported service list is shown in Table 3-2.

Table 3-2 Supported Service List

Abbr. Definition Files
GATTS Generic Attribute Service gatt_builtin_services.h
GAS Generic Access Service gatt_builtin_services.h
. bas.c, bas.h
BAS Battery Service .
bas_config.h
. . . dis.c, dis.h
DIS Device Information Service . .
dis_config.h
. . hids.c, hids.h
HIDS Human Interface Device Service

hids_kb.c, hids_kb.h

3.1.3 Profile Server Interaction

Profile server layer handles interaction with protocol stack layer, and provides interfaces to design specific service.

Profile server interactions include adding service to server, characteristic value read, characteristic value write,

characteristic value notification and characteristic value indication.

3.1.3.1 Add service

Protocol stack maintains information of all services which are added from profile server layer. The number of total
service attribute table to be added shall be initialized first, profile server layer provides server_init() function to
initialize service table number.

void app_le_profile_init(void)

{
server_init(2);
simp_srv_id = simp_ble_service_add_service(app_profile_callback);
bas srv_id =bas add_service(app_profile_callback);

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

58

AmebaD BLE Stack User Manual

4 REALTEK

server_register_app_cb(app_profile_callback);

Profile server layer provides server_add_service() interface to add services to profile server layer.
T_SERVER_ID simp_ble_service_add_service(void *p_func)
{
if (false == server_add_service(&simp_service_id,
(uint8_t *)simple_ble_service_tbl,
sizeof(simple_ble_service_tbl),
simp_ble_service_chs))

APP_PRINT_ERRORO("simp_ble_service_add_service: fail");
simp_service_id = 0xff;
return simp_service_id;
}
pfn_simp_ble_service cb = (P_FUN_SERVER_GENERAL_CB)p_func;
return simp_service_id;

}

Figure 3-3 shows a server contains serval service tables.

-
server
service table 1 service table 2 : service table N |
{ { 1§ |
attribute el ement 1 attribute element 1 | attribute element 1 |
attribute element 2 attribute element 2 | attribute element 2 |
l... [
. _ . - | _
attribute el ement N attribute element N | attribute element N :
)) i} |
_____ (= ———
. !)
add service

Figure 3-3 Add Services to Server
After service is added to profile server layer, all services will be registered during GAP initialization procedure.
GAP layer will send message PROFILE_EVT_SRV_REG_COMPLETE to GAP layer upon completing
registeration process.

Register service’s process is shown in Figure 3-4.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

59

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

. server
e o L N R Y e T N
client (protocol stack (profile server layer , (specific service

——server add service

~&——service register request

——service register response—»
————— gatt_svc_ch- — — —

Figure 3-4 Register Service’s Process
Registration of services is started by sending service register request to protocol stack during initialization of GAP,
and then register all services which have been added. If server general callback function is not NULL, once the
last service is registered properly, profile server layer will send PROFILE_EVT _SRV_REG _COMPLETE
message to application through registered callback function app_profile_callback().
T_APP_RESULT app_profile_callback(T_SERVER_ID service_id, void *p_data)

{
T _APP_RESULT app_result = APP_RESULT_SUCCESS;
if (service_id == SERVICE_PROFILE_GENERAL _ID)
{
T SERVER_APP_CB_DATA *p_param = (T_SERVER_APP_CB_DATA *)p_data;
switch (p_param->eventld)
{
case PROFILE_ EVT SRV_REG_COMPLETE:// srv register result event.
APP_PRINT_INFO1("PROFILE_EVT SRV_REG COMPLETE: result %d",
p_param->event_data.service_reg_result);
break;
}

3.1.3.2 Service’s Callback

3.1.3.2.1 Server General Callback

Server general callback function is used to send events to application, including service register complete event
and send data complete event through characteristic value notification or indication.
This callback function shall be initialized with server_register_app_ch() function.

Server general callback function is defined in profile_server.h.
3.1.3.2.2 Specific Service Callback

For some attributes’ value is supplied by application, to access these attributes’ value, service’s callback functions

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

60

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

shall be implemented in specific service, which are used to handle read/write attribute value and update CCCD
value process from client.
This callback function struct shall be initialized with server_add_service() function.

Attribute element structure is defiend in profile_server.h.

/* service related callback functions struct */

typedef struct {
P FUN_GATT READ_ATTR_CB read_attr cb; /I Read callback function pointer
P FUN_GATT WRITE_ATTR_CB write_attr_cb; /I Write callback function pointer
P_FUN_GATT _CCCD_UPDATE_CB cccd_update_cb; /I update cccd callback function pointer

} T_FUN_GATT_SERVICE_CBS;

read_attr_ch: Attribute read callback, which is used to acquire value of attribute supplied by application when
attribute read request is sent from client side.

write_attr_cb: Attribute write callback, which is used to write value to attribute supplied by application when
attribute write request is sent from client side.

cced_update_cb: Client characteristic configuration descriptor value update callback, which is used to inform
application that the value of corresponding CCCD in service is written by client.

const T_FUN_GATT_SERVICE_CBS simp_ble_service_cbhs =

{
simp_ble_service attr read cb, // Read callback function pointer
simp_ble_service_attr_write_cb, // Write callback function pointer
simp_ble_service_cccd_update_cb // CCCD update callback function pointer
j 3

3.1.3.2.3 Write Indication Post Procedure Callback

Write indication post procedure callback function is used to execute some post procedure after handle write
request from client.

This callback function is initialized in write attribute callback function. If no post procedure will be executed, the
pointer of p_write_post_proc in write attribute callback function shall be assigned with null.

Write indication post procedure callback function is defined in profile_server.h.

3.1.3.3 Characteristic Value Read

This procedure is used to read a characteristic value from a server. There are four sub-procedures that can be used
to read a characteristic value, including read characteristic value, read using characteristic UUID, read long
characteristic values and read multiple characteristic values. If an attribute want to be readable, it shall be
configured with readable permissions. Attribute value can be read from service or application by using different

attribute flag.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

61

r:;&q% REAI_TEK AmebaD BLE Stack User Manual
3.1.3.3.1 Attribute Value Supplied in Attribute Element

The attribute with flag ATTRIB_FLAG_VALUE_INCL will be involved in this procedure.
{
ATTRIB_FLAG_VALUE_INCL, I* flags */
{ [* type_value */
LO_WORD(0x2A04),
HI_WORD(0x2A04),
100,
200,
0,
LO_WORD(2000),
HI_WORD(2000)

}l

58 [* bVvalueLen */
NULL,

GATT_PERM_READ [* permissions */

}l
The iinteraction between each layer is shown in Figure 3-5. Protocol stack layer will read value from attribute

element and respond this attribute value in read response directly.

_ server
client (" protocol stack ("profile server layer (" specific service

read request /
read by type request /
read blob request /
read multiple request

read response /
read by type response /
read blob response /
read multiple response

Figure 3-5 Read Characteristic Value - Attribute Value Supplied in Attribute Element
3.1.3.3.2 Attribute Value Supplied by Application without Result Pending

The attribute with flag ATTRIB_FLAG_VALUE_APPL will be involvde in this procedure.

{
ATTRIB_FLAG_VALUE_APPL,

{
LO_WORD(GATT_UUID_CHAR_SIMPLE_V1_READ),
HI_WORD(GATT_UUID_CHAR_SIMPLE_V1 READ)
I8
0,
NULL,

Copyright Realtek Semiconductor Corporation.

All Rights Reserved. 62

r:;&q% REAI_TEK AmebaD BLE Stack User Manual
GATT_PERM_READ

2

The interation between each layer is shown in Figure 3-6. When local device receives read request, protocol stack
will send read indication to profile server layer. Profile server layer will get the value in specific service by calling
read attribute callback. Afterwards, profile server layer will return the data to protocol stack through read

confirmation.

_ server
client (" protocol stack ("profile server layer (__specific service

read request /
read by type request /

read blob request / o
read multiple request read indication ’

~e——read attribute callback—»
read response /

read by type response /
read blob response /
read multiple response

-e——read confirmation

Figure 3-6 Read Characteristic Value - Attribute Value Supplied by Application without Result Pending

The sample code is shown as follows, app_profile_callback shall return APP_RESULT_SUCCESS:

T_APP_RESULT app_profile_callback(T_SERVER_ID service_id, void *p_data)

{
T _APP_RESULT app_result = APP_RESULT _SUCCESS;

else if (service_id == simp_srv_id)

{
TSIMP_CALLBACK_DATA *p_simp_cb_data = (TSIMP_CALLBACK_DATA *)p_data;
switch (p_simp_ch_data->msg_type)

{
case SERVICE_CALLBACK_TYPE_READ_CHAR_VALUE:
{
if (p_simp_cb_data->msg_data.read_value_index == SIMP_READ_ V1)
{
uint8_t value[2] = {0x01, 0x02};
APP_PRINT_INFOO("SIMP_READ_V1");
simp_ble_service_set parameter(
SIMPLE_BLE_SERVICE_PARAM_V1 READ_CHAR_VAL, 2, &value);
}
}
break;
}

return app_result;

Copyright Realtek Semiconductor Corporation.

All Rights Reserved. 63

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

}

3.1.3.3.3 Attribute Value Supplied by Application with Result Pending

The attribute with flag ATTRIB_FLAG_VALUE_APPL will be involved in this procedure.
Attribute value from application can’t be read immediately, so it should be transmitted by invoking

server_attr_read_confirm() in specific service. The interaction between each layer is shown in Figure 3-7.

] server
-y S ~ e e ~ -~ T L T T TN
client (protocol stack (profile server layer (specific service

read request /
read by type request /

read blob request / o
read multiple request | read indication ’

read attribute callback—»
read response /

read by type response /
read blob response /
read multiple response

A

read confirmation

Figure 3-7 Read Characteristic Value - Attribute Value Supplied by Application with Result Pending

The sample code is shown as follows, app_profile_callback() shall return APP_RESULT _PENDING:
T_APP_RESULT app_profile_callback(T_SERVER_ID service_id, void *p_data)

{
T_APP_RESULT app_result = APP_RESULT_PENDING;

else if (service_id == simp_srv_id)

{
TSIMP_CALLBACK_DATA *p_simp_cb_data = (TSIMP_CALLBACK_DATA *)p_data;
switch (p_simp_ch_data->msg_type)
{
case SERVICE_CALLBACK TYPE_READ CHAR_VALUE:
{
if (p_simp_cb_data->msg_data.read_value_index == SIMP_READ_V1)
{
uint8_t value[2] = {0x01, 0x02};
APP_PRINT _INFOO("SIMP_READ_V1");
simp_ble_service_set parameter(
SIMPLE_BLE_SERVICE_PARAM_V1_READ_CHAR_VAL, 2, &value);
}
}
break;
}
return app_result;
}

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

64

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

3.1.3.4 Characteristic Value Write

This procedure is used to write a characteristic value to a server. There are four sub-procedures that can be used to
write a characteristic value, including write without response, signed write without response, write characteristic

value and write long characteristic values.
3.1.3.4.1 Write Characteristic Value

1. Attribute Value Supplied in Attribute Element

The attribute with flag ATTRIB_FLAG_VOID will be involved in this procedure.
uint8 tcha val_v8 011[1] = {Ox08};
const T_ATTRIB_APPL gatt_dfindme_profile[] = {

/* handle = 0x000e Characteristic value -- Value V8 */

{
ATTRIB_FLAG_VOID, I* flags */

{ [* type_value */
LO_WORD(0xB008),
HI_WORD(0xB008),

}l

1, /* bValuelLen */

(void *)cha_val_v8_011,

GATT PERM_READ | GATT_PERM_WRITE /* permissions */

The procedure executing between each layer is shown in Figure 3-8. The write request is used to request the
server to write the value of an attribute and acknowledge that write operation has been achieved with a write

response directly.

_ server
client (" protocol stack) (profile server layer (" specific service

write request———»

~————write response

Figure 3-8 Write Characteristic Value - Attribute Value Supplied in Attribute Element

2. Attribute Value Supply by Application without Result Pending

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

65

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

The attribute with flag ATTRIB_FLAG_VALUE_APPL will be involved in this procedure.

The interaction between each layer is shown in Figure 3-9. When local device receives write request, protocol
stack will send write request indication to profile server layer, and profile server layer will write the value to
specific service by calling write attribute callback. Profile server layer will return write result through write
request confirmation.

If server need to execute subsequent procedure after profile server layer returns write confirmation, the

pointer of callback function write_ind_post_proc() will be invoked if it isn’t null.

(J server
client g protocol stack \; (rprofile server Iayer\; \f specific service \J

write request——»

—write request indication—>
~—write attribute callback—»>|
~4—write request confirmation—
————write response———— — — — write_ind_post_proc- —

Figure 3-9 Write Characteristic Value - Attribute Value Supplied by Application without Result Pending
Application will be notified with srv_chs registered by server_add_service(), and the write_type will be
WRITE_REQUEST.

The sample code is shown as follows, app_profile_callback() shall return with result APP_RESULT_SUCCESS:
T_APP_RESULT app_profile_callback(T_SERVER_ID service_id, void *p_data)

{
T_APP_RESULT app_result = APP_RESULT_SUCCESS;

else if (service_id == simp_srv_id)

{
TSIMP_CALLBACK_DATA *p_simp_cb_data = (TSIMP_CALLBACK_DATA *)p_data;
switch (p_simp_ch_data->msg_type)

{
case SERVICE_CALLBACK TYPE_WRITE_CHAR_VALUE:
{
switch (p_simp_cb_data->msg_data.write.opcode)
{
case SIMP_WRITE_V2:
{

APP_PRINT _INFO2("SIMP_WRITE_V2: write type %d, len %d",
p_simp_ch_data->msg_data.write.write_type,
p_simp_ch_data->msg_data.write.len);

}

return app_result;

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

66

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

}
3. Attribute Value Supply by Application with Result Pending

The attribute of flag is ATTRIB_FLAG_VALUE_APPL will be involved in this procedure.
If write attribute value process cannot be completed immediately, server attr write_confirm() shall be
invoked by specific service. The interaction between each layer is shown in Figure 3-10.

Write indication post procedure is optional.

. server
PRI S X0 ~ ——— = — = — ~ ——— = —— =N
client (protocol stack (profile server layer (specific service

write request——»

write request indication—>|

write attribute callback—»
————— write request confirmation

~e—————write response

— — — write_ind_post_proc- — |

Figure 3-10 Write Characteristic Value - Attribute Value Supplied by Application with Result Pending
Application will be notified with srv_cbs registered by server_add service(), and the write_type will be

WRITE_REQUEST.

The sample code is shown as follows, app_profile_callback() shall return APP_RESULT _PENDING:
T_APP_RESULT app_profile_callback(T_SERVER_ID service_id, void *p_data)

{
T_APP_RESULT app_result = APP_RESULT_PENDING;
else if (service_id == simp_srv_id)
{
TSIMP_CALLBACK_DATA *p_simp_cb_data = (TSIMP_CALLBACK_DATA *)p_data;
switch (p_simp_cb_data->msg_type)
{
case SERVICE_CALLBACK_TYPE_WRITE_CHAR_VALUE:
{
switch (p_simp_ch_data->msg_data.write.opcode)
{
case SIMP_WRITE_V2:
{

APP_PRINT_INFO2("SIMP_WRITE_V2: write type %d, len %d",
p_simp_ch_data->msg_data.write.write_type,
p_simp_ch_data->msg_data.write.len);

}
return app_result;
}

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

67

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

4. Write CCCD Value
If local device receives write request from client of writing characteristic configuration declaration, protocol
stack updates CCCD information. Afterwards, profile server layer informs APP that CCCD information has

been updated by update CCCD callback function. The interaction between each layer is shown in Figure 3-11.

_ server
client (" protocol stack ("profile server layer (" specific service

write request——»

——update CCCD information—

<———write response update CCCD callback—»>|

Figure 3-11 Write Characteristic Value — Write CCCD Value
void simp_ble_service_cccd_update cb(uint8 t conn_id, T_SERVER _ID service_id, uint16_t index,
uintl6_t ccchits)

TSIMP_CALLBACK_DATA callback_data;

bool is_handled = false;

callback_data.conn_id = conn_id;

callback_data.msg_type = SERVICE_CALLBACK TYPE_INDIFICATION _NOTIFICATION;
APP_PRINT_INFO2("simp_ble_service_cccd_update_cb: index = %d, ccchits 0x%x", index, ccchits);
switch (index)

{
case SIMPLE BLE SERVICE_CHAR_NOTIFY_CCCD_INDEX:
{
if (cccbits & GATT_CLIENT _CHAR_CONFIG_NOTIFY)
{
/I Enable Notification
callback_data.msg_data.notification_indification_index = SIMP_NOTIFY_INDICATE V3 _ENABLE;
}
else
{
/I Disable Notification
callback_data.msg_data.notification_indification_index = SIMP_NOTIFY_INDICATE_V3_DISABLE;
}
is_handled = true;
}
break;
case SIMPLE_BLE_SERVICE_CHAR_INDICATE_CCCD_INDEX:
{

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

if (ccchits & GATT_CLIENT_CHAR_CONFIG_INDICATE)

{
/I Enable Indication
callback_data.msg_data.notification_indification_index = SIMP_NOTIFY_INDICATE V4 ENABLE;
}
else
{
/I Disable Indication
callback_data.msg_data.notification_indification_index = SIMP_NOTIFY_INDICATE_V4 DISABLE;
}
is_handled = true;
}
break;
default:
break;
}

/* Notify Application. */
if (pfn_simp_ble_service_cb && (is_handled == true))
{

pfn_simp_ble_service_ch(service_id, (void *)&callback data);

}

Application will be notified with srv_chs registered by server _add_service(), and the msg_type will be
SERVICE_CALLBACK TYPE_INDIFICATION_NOTIFICATION.

T_APP_RESULT app_profile_callback(T_SERVER_ID service_id, void *p_data)

{
T _APP_RESULT app_result = APP_RESULT_SUCCESS;

else if (service_id == simp_srv_id)

{
TSIMP_CALLBACK_DATA *p_simp_cb_data = (TSIMP_CALLBACK_DATA *)p_data;
switch (p_simp_cb_data->msg_type)

{
switch (p_simp_ch_data->msg_type)
{
case SERVICE_CALLBACK_TYPE_INDIFICATION_NOTIFICATION:
{
switch (p_simp_cb_data->msg_data.notification_indification_index)
{
case SIMP_NOTIFY_INDICATE_V3 ENABLE:
{
APP_PRINT_INFOO("SIMP_NOTIFY_INDICATE_V3_ENABLE");
}

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

69

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

break;
case SIMP_NOTIFY_INDICATE_V3 DISABLE:
{
APP_PRINT _INFOO("SIMP_NOTIFY_INDICATE_V3 _DISABLE");
}
break;
case SIMP_NOTIFY_INDICATE_V4 ENABLE:
{
APP_PRINT _INFOO("SIMP_NOTIFY_INDICATE_V4 ENABLE");
}
break;
case SIMP_NOTIFY_INDICATE_V4 DISABLE:
{
APP_PRINT_INFOO("SIMP_NOTIFY_INDICATE_V4 DISABLE™);
}
break;
default:
break;
}
}
break;
}

return app_result;

3.1.3.4.2 Write without Response

The difference between write without response procedure and write characteristic value procedure is server shall
not response write result to client.
1. Attribute Value Supplied by Application
The attribute with flag ATTRIB_FLAG_VALUE_APPL will be involved in this procedure.
The procedure executing between each layer is shown in

Figure 3-12 Write without Response - Attribute Value Supplied by Application

When local device receives write command, write_attr_cb() registered by server_add_service() will be called.
Application will be notified with srv_cbs registered by server_add service(), and the write_type will be
WRITE_WITHOUT_RESPONSE.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

7 U@ REALTEK AmebaD BLE Stack User Manual

_ server
client (protocol stack \, (profile server Iayer\; (specific service \;

write command——»|

——write command information—»
write attribute callback—»|

— — — write_ind_post_proc- — |

Figure 3-12 Write without Response - Attribute Value Supplied by Application
3.1.3.4.3 Write Long Characteristic Values

1. Prepare Write
If the length of characteristic value is longer than the supported maximum length (ATT_MTU - 3) of
characteristic value in a write request attribute protocol message, prepare write request will be used by client.
The value to be written is stored in profile server layer buffer first, then profile server layer handle prepare
write request indication, and respond write prepare write confirmation.

This procedure executing between each layer is shown in Figure 3-13.

) server
client (" protocol stack (profile server layer) ("~ specific service

prepare write request—-

—prepare write request indication»

&—prepare write confirmation—

——prepare write response

Figure 3-13 Write Long Characteristic Values — Prepare Write Procedure
2. [Execute Write without Result Pending
After sending prepare write request, execute write request is used to complete the process of writing attribute
value. Application will be notified with srv_cbs registered by server_add_service(), and the write_type will be
WRITE_LONG.
Write indication post procedure is optional.

This procedure executing between each layer is shown in Figure 3-14.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

71

7 U@ REALTEK AmebaD BLE Stack User Manual

() server
client ﬂf protocol stack (profile server layer (" specific service \D

execute write request—»

——execute write indication—»
-4——write attribute callback—»
-t—execute write confirmation—

-4——execute write response - — — write_ind_post_proc- — -

Figure 3-14 Write Long Characteristic Values— Execute Write without Result Pending
3. Execute Write with Result Pending
If the process of writing value can’t be completed immediately, server_exec_write_confirm() shall be invoked
by specific service.
Write indication post procedure is optional.

This interaction between each layer is shown in Figure 3-15.

(J server
i RS D N N P o e o T ~ RN T NPT
client E protocol stack (profile server layer { specific service J

execute write request—»>|

——execute write indication—»|
write attribute callback—»>

<1 execute write confirmation

-e——execute write response

— — — write_ind_post_proc- — #

Figure 3-15 Write Long Characteristic Values— Execute Write with Result Pending

3.1.3.5 Characteristic Value Notification

This procedure is used to notify a client of a characteristic value from a server.
Server sends data by actively invoking server_send_data() function. After send data procedure is completed, it is
optional to inform application by server general callback function.

The interaction between each layer is shown in Figure 3-16.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

72

7 U@ REALTEK AmebaD BLE Stack User Manual

: server
________ N e e o o T i Y e o N
client (protocol stack (profile server layer , (specific service

-———server send data:

~————update request

t—nhandle value notification——

update response———»
————— gatt_svc_cb- — — — |

Figure 3-16 Characteristic Value Notification
bool simp_ble_service_send_v3 notify(uint8 t conn_id, T_SERVER_ID service_id, void *p_value,
uint16_t length)

{
APP_PRINT _INFOO("simp_ble_service_send_v3_notify");
/I send notification to client
return server_send_data(conn_id, service_id, SIMPLE BLE_SERVICE _CHAR_V3 NOTIFY_INDEX, p_value,
length, GATT_PDU_TYPE_ANY);
}

3.1.3.6 Characteristic Value Indication

This procedure is used to indicate client of a characteristic value from a server. Once the indication is received, the
client shall respond with a confirmation. After server receives handle value confirmation, it is optional to inform
application by server general callback function.

The interaction between each layer is shown in Figure 3-17.

server
client e S e S D e e T ~ e e e
\ protocol stack \ profile server layer) \ specific service

-t———server send data:

~¢————update request

~t——handle value indication

——handle value confirmation—»|

update status indication—»>|
————— gatt_svc_ch- — — — |

Figure 3-17 Characteristic Value Indication
bool simp_ble_service_send_v4 _indicate(uint8 t conn_id, T_SERVER_ID service_id, void *p_value,
uint16_t length)

{
APP_PRINT_INFOO("simp_ble_service_send_v4_indicate");
/I send indication to client
return server_send_data(conn_id, service_id, SIMPLE_BLE_SERVICE_CHAR_V4_ INDICATE_INDEX,
p_value, length, GATT_PDU_TYPE_ANY);
}

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

73

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

app_profile_callback() will be called after handle value confirmation.
T_APP_RESULT app_profile_callback(T_SERVER_ID service_id, void *p_data)

{
T _APP_RESULT app_result = APP_RESULT_SUCCESS;

if (service_id == SERVICE_PROFILE_GENERAL_ID)

{
T_SERVER_APP_CB_DATA *p_param = (T_SERVER_APP_CB_DATA *)p_data;

switch (p_param->eventld)

{

case PROFILE_EVT _SEND_DATA COMPLETE:
APP_PRINT_INFO5("PROFILE_EVT SEND_DATA COMPLETE: conn_id %d, cause 0x%X,
service_id %d, attrib_idx 0x%x, credits %d",

p_param->event_data.send_data_result.conn_id,
p_param->event_data.send_data_result.cause,
p_param->event_data.send_data_result.service _id,
p_param->event_data.send_data_result.attrib_idx,
p_param->event_data.send_data_result.credits);

if (p_param->event_data.send_data_result.cause == GAP_SUCCESS)

{
APP_PRINT_INFOO("PROFILE_EVT SEND_DATA COMPLETE success");

APP_PRINT_ERRORO("PROFILE_EVT_SEND_DATA COMPLETE failed");

}
break;

default:
break;

3.1.4 Implementation of Specific Service

A profile is composed of one or more services which are necessary to fulfill a use case. A service is composed of
characteristics. Each characteristic contains a characteristic value and may contain optional characteristic
descriptor. The service, characteristic and the components of the characteristic (i.e. value and descriptors) contain
the profile data and are all stored in attributes on the server.
The guide line on how to develop a specific service is as follows:

* Define Service and Profile Spec

* Define Service Attribute Table

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

* Define interface between Service and APP

* Define xxx_add_service(), xxx_set_parameter(), xxx_notify(), xxx_indicate() API etc

* Implement xxx_ble_service_cbs with type of T_FUN_GATT_SERVICE_CBS APIs
In this chapter, simple BLE service will be tacken as an example, and a guide on how to implement a specific
service will be provided.

For more details refer to source code in simple_ble_service.c and simple_ble_service.h.

3.1.4.1 Define Service and Profile Spec

In order to implement a specific service, we need to define the service and profile spec.

3.1.4.2 Define Service Table

Service that is composed of attribute elements is defined by a service table which consists of one or more services.

3.1.4.2.1 Attribute Element

Attribute element is elementary unit of service. The structure of attribute element is defined in gatt.h.

typedef struct {

uintle t flags; [**< Attribute flags @ref GATT_ATTRIBUTE_FLAG */

uint8 t type_value[2 + 14]; /**< 16 bit UUID + included value or 128 bit UUID */

uintl6 t value_len; [**< Length of value */

void *p_value_context; /**< Pointer to value if @ref ATTRIB_FLAG_VALUE_INCL

and @ref ATTRIB_FLAG_VALUE_APPL not set */

uint32_t permissions; [**< Attribute permission @ref GATT_ATTRIBUTE_PERMISSIONS */
} T_ATTRIB_APPL;
1. Flags

Flags option value and description are shown in Table 3-3.
Table 3-3 Flags Option Value and Description
Option Values Description

Used only for primary service declaration attributes if GATT over BLE

ATTRIB_FLAG_LE)
- - is supported

Attribute value is neither supplied by application nor included following
ATTRIB_FLAG VOID 16bit UUID. Attribute value is pointed by p_value_context and
value_len shall be set to the length of attribute value.

ATTRIB_FLAG VALUE_INCL Attribute value is included following 16 bit UUID
ATTRIB_FLAG VALUE_APPL Application has to supply attribute value
ATTRIB_FLAG _UUID _128BIT Attribute uses 128 bit UUID

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

75

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

ATTRIB FLAG ASCII_Z Attribute value is ASCII_Z string
ATTRIB_FLAG_CCCD_APPL Application will be informed if CCCD value is changed

ATTRIB_FLAG_CCCD_NO_FILTER

Application will be informed about CCCD value when CCCD is written
by client, no matter it is changed or not

Note:

ATTRIB_FLAG_LE can only be used by attribute whose type is primary service declaration, to indicate that
primary service allows LE link access.

Attribute element must pick one value among ATTRIB_FLAG_VOID, ATTRIB_FLAG_VALUE_INCL
and ATTRIB_FLAG_VALUE_APPL.

ATTRIB_FLAG_VALUE_INCL flag means attribute value will be put into the last fourteen bytes of
type_value (the first two bytes of type_value is used to save UUID), and value_len is the number of the bytes
put into the region of the last fourteen bytes. As attribute value has been provided in type value,
p_value_context pointer is assigned with NULL.

ATTRIB_FLAG_VALUE_APPL flag means attribute value is supplied by application. As long as stack is
involved in attribute value related operation, it will interact with application to fulfil the corresponding
operation process. As attribute value is provided by application, only UUID of attribute is required to be put
into type_value, while value_lenis 0 and p_value_context pointer is assigned with NULL.
ATTRIB_FLAG_VOID flag means attribute value is neither supplied in the last 14 bytes of type_value nor
application. Only UUID of attribute is required in type_value, p_value_context pointer points to attribute

value and value_len indicates the length of the attribute value.

Table 3-4 shows the flags value and actual value used by read attribute process.

Table 3-4 Flags Value Select Mode

APPL APPL|ASCII_Z INCL INCL|ASCII_Z VOID VOIDI|ASCII_Z
value_len Any(NULL) Any(NULL) Strlen(value) Strlen(value) Strlen(value) Strlen(value)
If set type_value+2 Any(NULL) Any(NULL) value value Any(NULL) Any(NULL)
p_value_context ~ Any(NULL) Any(NULL) Any(NULL) Any(NULL) value value
Actual Reply by Reply by
Actual length Strlen(value) Strlen(value)+1 Strlen(value) Strlen(value)+1
get by application application
read
. Reply by Reply by
attribute Actual value value Value + \0’ Value Value + \0°
application application

process

APPL: ATTRIB_FLAG_VALUE_APPL

VOID: ATTRIB_FLAG_VOID

INCL: ATTRIB_FLAG_VALUE_INCL

ASCIl_Z: ATTRIB_FLAG_ASCII_Z

2.

Permissions

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

76

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

The permissions associated with the attribute specify the security level required for read and / or write access,

as well as notification and / or indication. Value of permissions is used to indicate permission of the attribute.

Attribute permissions are a combination of access permissions, encryption permissions, authentication

permissions and authorization permissions, and its acceptable values are given in Table 3-5.

Table 3-5 Value of Permissions
Types Permissions

GATT_PERM_READ
GATT_PERM_READ_AUTHEN_REQ
GATT_PERM_READ_AUTHEN_MITM_REQ
GATT_PERM_READ_AUTHOR_REQ
GATT_PERM_READ_ENCRYPTED REQ
GATT_PERM_READ_AUTHEN_SC_REQ
GATT_PERM_WRITE
GATT_PERM_WRITE_AUTHEN_REQ
GATT_PERM_WRITE_AUTHEN_MITM_REQ
GATT_PERM_WRITE_AUTHOR_REQ
GATT_PERM_WRITE_ENCRYPTED_REQ
GATT_PERM_WRITE_AUTHEN_SC_REQ
GATT_PERM_NOTIF_IND
GATT_PERM_NOTIF_IND_AUTHEN_REQ
GATT_PERM_NOTIF_IND_AUTHEN_MITM_REQ
GATT_PERM_NOTIF_IND_AUTHOR_REQ
GATT_PERM_NOTIF_IND_ENCRYPTED_REQ
GATT_PERM_NOTIF_IND_AUTHEN_SC_REQ

Read Permissions

Write Permissions

Notify/Indicate Permissions

3.1.4.2.2 Service Table

Service contains a group of attributes that are called service table. A service table contains various types of
attributes, such as service declaration, characteristic declaration, characteristic value and characteristic descriptor
declaration.

An example of service table is given in Table 3-6, and it is implemented in simple_ble_service.c of ble_peripheral
sample project.

Table 3-6 Service Table Example

Flags Attribute Type Attribute Value Permission
INCL | LE <<primary service declaration>> <<simple profile UUID — OXA00A>> read
INCL <<characteristic declaration>> Property(read) read

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

77

i, REALTEK

AmebaD BLE Stack User Manual

APPL
VOID | ASCII_Z
INCL
APPL
INCL

APPL

CCCD_APPL
INCL

APPL

CCCD_APPL

Note:

<<characteristic value>>

<<Characteristic User
Description>>

<<characteristic declaration>>
<<characteristic value>>
<<characteristic declaration>>
<<characteristic value>>

<<client characteristic
configuration descriptor>>

<<characteristic declaration>>
<<characteristic value>>

<<client characteristic
configuration descriptor>>

UUID(0xB001),Value not defined here read

UUID(0x2901)

read

Value defined in p_value_context

Property(write | write without response) read

UUID(0xB002),
Value not defined here

Property(notify)

UUID(0xB003),
Value not defined here

Default CCCD value

Property(indicate)

UUID(0xB004),
Value not defined here

Default CCCD value

write
read

none

read | write
read

none

read | write

The elements in quotation mark are UUID value, which are either defined in core spec, or customized.
LE is abbreviation of ATTRIB_FLAG_LE
INCL is abbreviation of ATTRIB_FLAG_VALUE_INCL

APPL is abbreviation of ATTRIB_FLAG_VALUE_APPL

The sample code for service table is as follows:
const T_ATTRIB_APPL simple_ble_service_tbl[] =

[* <<Primary Service>>, .. */

(ATTRIB_FLAG_VALUE_INCL | ATTRIB_FLAG_LE),

/* flags
[* type_value */

LO_WORD(GATT_UUID_PRIMARY_SERVICE),
HI_WORD(GATT_UUID_PRIMARY_SERVICE),

LO_WORD(GATT_UUID_SIMPLE_PROFILE),

HI_WORD(GATT_UUID_SIMPLE_PROFILE)

UUID_16BIT_SIZE,

GATT_PERM_READ

{
{
{
I8
NULL,
I8

[* <<Characteristic>> demo for read */

{

/* bValuelLen

/* service UUID */

*/

[* p_value_context */

/* permissions

*/

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

78

7 U@ REALTEK AmebaD BLE Stack User Manual

ATTRIB_FLAG_VALUE_INCL, I* flags */

{ /* type_value */
LO_WORD(GATT_UUID_CHARACTERISTIC),
HI_WORD(GATT_UUID_CHARACTERISTIC),

GATT_CHAR_PROP_READ [* characteristic properties */
[* characteristic UUID not needed here, is UUID of next attrib. */

2
1, /* bValuelLen */
NULL,
GATT_PERM_READ [* permissions */
2
{
ATTRIB_FLAG VALUE_APPL, [* flags */
{ [* type_value */
LO_WORD(GATT_UUID_CHAR_SIMPLE_V1_READ),
HI_ WORD(GATT_UUID_CHAR_SIMPLE_V1 READ)
j¢
0, /* bValueLen */
NULL,
GATT_PERM_READ [* permissions */
j2
{
ATTRIB_FLAG_VOID | ATTRIB_FLAG_ASCII_Z, * flags */
{ I* type_value */
LO_WORD(GATT_UUID_CHAR_USER_DESCR),
HI_ WORD(GATT_UUID_CHAR_USER_DESCR),
j2
(sizeof(vl_user_descr) - 1), /* bValueLen */
(void *)v1_user_descr,
GATT _PERM_READ [* permissions */
j2
[* <<Characteristic>> demo for write */
{
ATTRIB_FLAG_VALUE_INCL, I* flags */
{ /* type_value */
LO_ WORD(GATT _UUID_CHARACTERISTIC),
HI_WORD(GATT_UUID_CHARACTERISTIC),
(GATT_CHAR_PROP_WRITE | GATT_CHAR_PROP_WRITE_NO_RSP) /* characteristic properties
*/
[* characteristic UUID not needed here, is UUID of next attrib. */
2
1, /* bValuelLen */
NULL,
GATT_PERM_READ [* permissions */

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

7 U@ REALTEK AmebaD BLE Stack User Manual

j¢
{

ATTRIB_FLAG VALUE_APPL, [* flags */

{ [* type_value */
LO_WORD(GATT _UUID_CHAR_SIMPLE_V2_ WRITE),

HI_. WORD(GATT _UUID_CHAR_SIMPLE_V2_WRITE)

2

0, /* bValuelLen */

NULL,

GATT_PERM_WRITE [* permissions */

2
[* <<Characteristic>>, demo for notify */
{

ATTRIB_FLAG_VALUE_INCL, I* flags */

{ I* type_value */
LO_WORD(GATT_UUID_CHARACTERISTIC),
HI_WORD(GATT_UUID_CHARACTERISTIC),
(GATT_CHAR_PROP_NOTIFY) [* characteristic properties */
[* characteristic UUID not needed here, is UUID of next attrib. */

j2

1, /* bValueLen */

NULL,

GATT_PERM_READ [* permissions */

j2
{

ATTRIB_FLAG VALUE_APPL, [* flags */

{ I* type_value */
LO_ WORD(GATT _UUID_CHAR_SIMPLE_V3 NOTIFY),
HI_ WORD(GATT_UUID_CHAR_SIMPLE_V3_NOTIFY)

j2

0, I* bValueLen */

NULL,

GATT_PERM_NONE [* permissions */

j2

/* client characteristic configuration */

{
ATTRIB_FLAG_VALUE_INCL | ATTRIB_FLAG_CCCD_APPL, I* flags */
{ [* type_value */

LO_WORD(GATT_UUID_CHAR_CLIENT_CONFIG),
HI_WORD(GATT_UUID_CHAR_CLIENT_CONFIG),

/* NOTE: this value has an instantiation for each client, a write to */

/* this attribute does not modify this default value: */
LO_WORD(GATT_CLIENT_CHAR_CONFIG_DEFAULT), /* client char. config. bit field */
HI_WORD(GATT_CLIENT_CHAR_CONFIG_DEFAULT)

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

80

7 U@ REALTEK AmebaD BLE Stack User Manual

j¢

2, /* bValueLen */

NULL,

(GATT_PERM_READ | GATT_PERM_WRITE) [* permissions */

2
[* <<Characteristic>> demo for indicate */
{

ATTRIB_FLAG VALUE_INCL, I* flags */

{ [* type_value */

LO_ WORD(GATT_UUID_CHARACTERISTIC),
HI_WORD(GATT_UUID_CHARACTERISTIC),
(GATT_CHAR_PROP_INDICATE) [* characteristic properties */
[* characteristic UUID not needed here, is UUID of next attrib. */

j2

1, I* bValueLen */

NULL,

GATT_PERM_READ [* permissions */

j¢
{

ATTRIB_FLAG VALUE_APPL, [* flags */

{ I* type_value */
LO_WORD(GATT _UUID_CHAR_SIMPLE_V4 INDICATE),
HI_WORD(GATT_UUID_CHAR_SIMPLE_V4_INDICATE)

j2

0, /* bValuelLen */

NULL,

GATT_PERM_NONE [* permissions */

2
/* client characteristic configuration */
{

ATTRIB_FLAG_VALUE_INCL | ATTRIB_FLAG_CCCD_APPL, I* flags */

{ I* type_value */
LO_WORD(GATT _UUID_CHAR_CLIENT_CONFIG),
HI_WORD(GATT_UUID_CHAR_CLIENT_CONFIG),

/* NOTE: this value has an instantiation for each client, a write to */

[* this attribute does not modify this default value: */

LO_WORD(GATT _CLIENT_CHAR_CONFIG_DEFAULT), /* client char. config. bit field */
HI_ WORD(GATT_CLIENT _CHAR_CONFIG_DEFAULT)

2

2, /* bValueLen */

NULL,

(GATT_PERM_READ | GATT_PERM_WRITE) [* permissions */

j2

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

81

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

3.1.4.3 Define interface between Service and App

When a service attribute value was read or written, the notification will be passed to application by callback
registered by application.

Taking simple BLE service as an example, we define a data with type TSIMP_CALLBACK_ DATA to hold
notification result.

typedef struct {
uint8 t conn_id;
T SERVICE_CALLBACK_TYPE msg_type;
TSIMP_UPSTREAM_MSG_DATA msg_data;
} TSIMP_CALLBACK_DATA,;

msg_type indicates it is a read, write or CCCD update operation.

typedef enum {
SERVICE_CALLBACK_TYPE_INDIFICATION_NOTIFICATION =1,
SERVICE_CALLBACK_TYPE_READ_CHAR_VALUE = 2,
SERVICE_CALLBACK_TYPE_WRITE_CHAR_VALUE = 3,

} T_SERVICE_CALLBACK_TYPE;

msg_data holds the data of read, write or CCCD update operation.

3.1.4.4 Define xxx_add_service(), xxx_set_parameter(), xxx_notify(),

xxX_indicate() API etc.

xxx_add_service() is used to add service table to profile server layer, and register a callback for service attribute
read, write or CCCD update.

xxx_set_parameter() is used to set service related data by application.

xxx_notify() is used to send notification data.

xxx_indicate() is used to send indication data.

3.1.4.5 Implement xxx_ble_service _cbs with type of

T_FUN_GATT_SERVICE_CBS APIs

xxx_ble_service_cbs is used to handle read, write or CCCD update operation from remote profile client.
const T_FUN_GATT_SERVICE_CBS simp_ble_service cbs ={

simp_ble_service attr read cb, // Read callback function pointer

simp_ble_service_attr_write_cb, / Write callback function pointer

simp_ble_service cccd_update cb // CCCD update callback function pointer

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

82

% M) REAI_TEK AmebaD BLE Stack User Manual
¥

Callback is registered by server_add_service() which is called in xxx_ble_service_add_service().

T_SERVER_ID simp_ble_service_add_service(void *p_func)
{

if (false == server_add_service(&simp_service_id,
(uint8_t *)simple_ble_service_tbl,
sizeof(simple_ble_service_tbl),
simp_ble_service_chs))

APP_PRINT_ERRORO("simp_ble_service add_service: fail");
simp_service_id = 0xff;
return simp_service_id;

}
pfn_simp_ble_service cb = (P_FUN_SERVER_GENERAL_CB)p_func;

return simp_service_id;

3.2 BLE Profile Client

3.2.1 Overview

Client interface of profile offers developers the functions to discovery services at GATT Server, receive and
handle indications and notifications from GATT Server, and send read/write request to GATT Server.

Figure 3-18 shows the profile client hierarchy.

Content of profile involves profile client layer and specific profile client. Profile client layer above protocol stack
encapsulates interfaces for specific client to access protocol stack. Thus, development of specific clients does not
involve details of protocol stack process and becomes simpler and clearer. Specific client which is based on the

profile client layer is implemented by application layer.

application layer

GAP layer specific client

profile client layer

protocol stack

Figure 3-18 Profile Client Hierarchy

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

83

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

Implementation of specific profile client is quite different from that of profile server. Profile client does not
involve attribute table, and provides functions to collect and acquire information instead of providing service and

information.

3.2.2 Supported Clients

Supported clients are listed in Table 3-7.

Table 3-7 Supported Clients

Terms Definitions Files
. . . . gaps_client.c
GAP Client Attribute Service Client)
gaps_client.h
. . . bas_client.c
BAS Client Battery Service Client .
bas_client.h

Apple Notification Center Service ancs_client.c

ANCS Client . .
Client ancs_client.h

simple_ble_client.c

SIMP Client Simple BLE Service Client . .
simple_ble_client.h

3.2.3 Profile Client Layer

Profile client layer handles interaction with protocol stack layer and provides interfaces to design specific client.
Client will discover services and characteristics of server, read and write attribute, receive and handle notifications

and indications from server.

3.2.3.1 Client General Callback

Client general callback function is used to send client_all_primary_srv_discovery() result to application when
client_id is CLIENT_PROFILE_GENERAL_ID. This callback function can be initialized with
client_register_general_client_cb() function.

void app_le_profile_init(void)

{
client_init(3);

client_register_general_client_cb(app_client_callback);

static T_USER_CMD_PARSE_RESULT cmd_srvdis(T_USER_CMD_PARSED_VALUE *p_parse_value)

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

84

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

{
uint8_t conn_id = p_parse_value->dw_param[0];
T_GAP_CAUSE cause;
cause = client_all_primary_srv_discovery(conn_id, CLIENT PROFILE_GENERAL _ID);
return (T_USER_CMD_PARSE_RESULT)cause;

¥
T_APP_RESULT app_client_callback(T_CLIENT_ID client_id, uint8 _t conn_id, void *p_data)

{
T_APP_RESULT result = APP_RESULT SUCCESS;

APP_PRINT_INFO2("app_client_callback: client_id %d, conn_id %d",
client_id, conn_id);
if (client_id == CLIENT_PROFILE_GENERAL _ID)

{
T CLIENT_APP_CB_DATA *p_client_app_cb_data=(T_CLIENT _APP_CB_DATA *)p_data;

switch (p_client_app_cb_data->ch_type)

{
case CLIENT_APP_CB_TYPE_DISC_STATE:

}
If APP does not use client_all_primary_srv_discovery() with CLIENT_PROFILE_GENERAL_ID, APP does not

need to register this general callback.

3.2.3.2 Specific Client Callback

3.2.3.2.1 Add Client

Profile client layer maintains information of all added specific clients. The total number of all client tables to be
added shall be initialized by invoking client_init() supplied by profile client layer.
Profile client layer provides client_register_spec_client_cb() interface to register specific client callbacks. Figure

3-19 shows that client layer contains serval specific client tables.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

85

7 U@ REALTEK AmebaD BLE Stack User Manual

' Client
T_CLIENT_CB_INFO 1 T_CLIENT_CB_INFON
{ {
bool used; bool used;
T_CLIENT _ID client id; PN T_CLIENT_ID client id;
const T_FUN_CLIENT_CBS *p_cbs; const T_FUN_CLIENT_CBS *p_cbs;
} }
\ A
add client

Figure 3-19 Add Specific Clients to Profile Client Layer
APP adds specific client to Profile Client Layer, and APP will record the returned client id to each added specific

client for implementation of subsequent data interaction process.

3.2.3.2.2 Callbacks

Specific client's callback functions shall be implemented in specific client module. The specific client callback

structure is defined in profile_client.h.

typedef struct {
P_FUN_DISCOVER_STATE_CB discover_state cb; //!< Discovery state callback function pointer
P_FUN_DISCOVER_RESULT CB discover_result cb; //!< Discovery reault callback function pointer

P_FUN_READ_RESULT CB read_result_cb; //'< Read response callback function pointer
P_FUN_WRITE_RESULT _CB write_result_cb; /< Write result callback function pointer

P_FUN_NOTIFY_IND_RESULT_CB notify_ind_result_cb;//!< Notify Indication callback function pointer
P_FUN_DISCONNECT CB disconnect_cb; //'< Disconnection callback function pointer

} T_FUN_CLIENT_CBS;
discover_state_ch: Discovery state callback, which is used to inform specific client module the discovery state of

client_xxx_discovery.

discover_result_cb: Discovery result callback, which is used to inform specific client module the discovery result
of client_xxx_discovery.

read_result_cb: Read result callback, which is used to inform specific client module the read result of
client_attr_read() or client_attr_read_using_uuid().

write_result_cb: Write result callback, which is used to inform specific client module the write result of
client_attr_write().

notify_ind_result_cb: Notification and indication callback, which is used to inform specific client module that
notification or indication data is received from server.

disconnect_cb: Disconnection callback, which is used to inform specific client module that the one LE link is

disconnected.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

86

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

3.2.3.3 Discovery Procedure

After establishing connection to the server, the client generally performs a discovery process if local device does
not store the handle information of server. Specific client needs to call client_xxx_discovery() to start discovery
procedure. Then specific client needs to handle discovery state in discover_state_chb() callback and discovery
result in callback discover_result_ch().

The interaction between each layer is shown in Figure 3-20.

client
server (" protocol stack) (" profile client layer (" specific client

Read by group type request/ GATT discover . .
Find by type value request/ [feqont y ~e——client_xxx_discovery.

Read by type request/
Find information request

GATT discovery
— response —>!

Read by group type response/ (success)
| Find by type value response/
Read by type response/ | GATT discovery
Find information response indication discover result cb—
------------- discover_result_cb-------p-
Read by group type request/ GATT discovery |
__Find by type value request/ confirmation
Read by type request/ | GATT discovery
Find information request indication

~ confirmation

discover_state_cb——»

Figure 3-20 GATT Discovery Procedure
3.2.3.3.1 Discovery State

Table 3-8 Discovery State
Reference API T_DISCOVERY_STATE

DISC_STATE_SRV_DONE,
DISC_STATE_FAILED
DISC_STATE_SRV_DONE
DISC_STATE_FAILED

DISC_STATE_SRV_DONE
DISC_STATE_FAILED

DISC_STATE_CHAR_DONE
DISC_STATE_FAILED

DISC_STATE_CHAR_DESCRIPTOR_DONE
DISC_STATE_FAILED

client_all_primary_srv_discovery()

client_by_uuid_srv_discovery()

client_by uuid128 srv_discovery()

client_all_char_discovery()

client_all_char_descriptor_discovery()

Copyright Realtek Semiconductor Corporation.

All Rights Reserved. 87

i, REALTEK

AmebaD BLE Stack User Manual

client_relationship_discovery()

client_by uuid_char_discovery()

client_by uuid128 char_discovery()

3.2.3.3.2 Discovery Result

Reference API

client_all_primary_srv_discovery()

client_all_primary_srv_discovery()

client_by uuid_srv_discovery(),
client_by_uuid128_srv_discovery()

client_all_char_discovery()

client_all_char_discovery()

client_all_char_descriptor_discovery()

client_all_char_descriptor_discovery()

client_relationship_discovery()

client_relationship_discovery()

client_by_uuid_char_discovery()

client_by uuid_char_discovery()

DISC_STATE_RELATION_DONE
DISC_STATE_FAILED

DISC_STATE_CHAR_UUID16_DONE
DISC_STATE_FAILED

DISC_STATE_CHAR_UUID128_DONE
DISC_STATE_FAILED

Table 3-9 Discovery Result

T_DISCOVERY_RESULT T
YPE

DISC_RESULT_ALL_SRV_UU
ID16

DISC_RESULT _ALL_SRV_UU
ID128

DISC_RESULT_SRV_DATA

DISC_RESULT_CHAR_UUID1
6

DISC_RESULT_CHAR_UUID1
28

DISC_RESULT_CHAR_DESC_
UuID16

DISC_RESULT_CHAR_DESC_
UuID128

DISC_RESULT _RELATION_U
UID16

DISC_RESULT_RELATION_U
uiD128

DISC_RESULT _BY_UUID16_
CHAR

DISC_RESULT BY_UUID128
_CHAR

T_DISCOVERY_RESULT DATA

T _GATT_SERVICE_ELEM16
*p_srv_uuid16_disc_data;

T GATT_SERVICE_ELEM128
*p_srv_uuid128 disc_data;

T _GATT_SERVICE BY_UUID_E
LEM *p_srv_disc_data;

T GATT_CHARACT _ELEM16
*p_char_uuid16_disc_data;

T _GATT_CHARACT_ELEM128
*p_char_uuid128_disc_data;

T GATT_CHARACT _DESC ELE
M16
*p_char_desc_uuid16_disc_data;

T_GATT_CHARACT_DESC_ELE
M128
*p_char_desc_uuid128_disc_data;

T_GATT_RELATION_ELEM16
*p_relation_uuid16_disc_data;
T_GATT_RELATION_ELEM128
*p_relation_uuid128 disc_data;

T _GATT_CHARACT_ELEM16
*p_char_uuid16_disc_data;

T _GATT_CHARACT_ELEM128
*p_char_uuid128_disc_data;

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

88

7 U@ REALTEK AmebaD BLE Stack User Manual

3.2.3.4 Characteristic Value Read

This procedure is used to read a characteristic value of a server. There are two sub-procedures in profile client
layer that can be used to read a Characteristic value: Read Characteristic Value by Handle and Read Characteristic

Value by UUID.
3.2.3.4.1 Read Characteristic Value by Handle

This sub-procedure is used to read a Characteristic Value from a server when the client knows the Characteristic
Value Handle. Reading characteristic value by handle is a three-phase process. Phase 1 and phase 3 are always
used. The phase 2 is an optional phase (see Figure 3-21):

* Phase 1: Call client_attr_read() to read Characteristic Value.

* Phase 2: Optional phase. If the Characteristic Value is greater than (ATT_MTU - 1) octets in length, the
Read Response only contains the first portion of the Characteristic Value and the Read Long
Characteristic Value procedure will be used.

* Phase 3: Profile client layer calls read_result_cb() to return read result.

The interaction between each layer is shown in Figure 3-21.

4 client)
L Sl (" protocol stack (profile client layer (" specific client)
4 : I
<4—GATT read request—<—C|'ent—attr—read
<«——read request
Phase 1
read response———»
_ ——GATT read response—!)
(-—GATT read by offset—)
<&— — —read blob request — — — -
L _ _read blob I Phase 2
rea Ob response — —GATT read response- P>
& cee j
(—read_result_cb——» Phase ?)

Figure 3-21 Read Characteristic Value by Handle

3.2.3.4.2 Read Characteristic Value by UUID

This sub-procedure is used to read a Characteristic Value from a server when the client only knows the
characteristic UUID and does not know the handle of the characteristic. Reading characteristic value by UUID is a

three-phase process. Phase 1 and phase 3 are always used. Phase 2 is optional (see Figure 3-22):

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

7 U@ REALTEK AmebaD BLE Stack User Manual

* Phase 1: Call client_attr_read_using_uuid() to read Characteristic Value.

* Phase 2: Optional phase. If the Characteristic Value is greater than (ATT_MTU - 4) octets in length, the
Read by Type Response only contains the first portion of the Characteristic Value and the Read Long
Characteristic Value procedure will be used.

* Phase 3: Profile client layer calls read_result_cb() to return read result.

The interaction between each layer is shown in Figure 3-22.

' client)
o (_protcolstack) (profe lentayer (__ speciiolient))
(«client_attr_read_using_uuid—)
@—GATT read by uuid—{<client_attr_read_using_uui
<——read by type request
Phase 1
read by type response—»
_ ——GATT read response—»)
(" -—GATT read by offset — h
4~ — —read blob request — — — -
 _ _ _read blob e Phase 2
rea 0D response — —GATT read response—p»
\ e ves /
(——read_result_cbh——» Phase 3)

Figure 3-22 Read Characteristic Value by UUID

3.2.3.5 Characteristic Value Write

This procedure is used to write a Characteristic Value to a server. There are four sub-procedures in profile client
layer that can be used to write a Characteristic Value: Write without Response, Signed Write without Response,

Write Characteristic Value and Write Long Characteristic Values.

3.2.3.5.1 Write Characteristic Value

This sub-procedure is used to write a Characteristic Value to a server when the client knows the Characteristic
Value Handle. When the length of value is less than or equal to (ATT_MTU - 3) octets, the procedure will be used.
Otherwise, the Write Long Characteristic Values sub-procedure will be used instead.

The interaction between each layer is shown in Figure 3-23.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved. 90

7 U@ REALTEK AmebaD BLE Stack User Manual

Value length <= mtu_size -3

client
server (" protocol stack) (profile client layer (" specific client
_ client_attr_write |
4—GATT write request— (GATT_WRITE_TYPE_REQ)

~————write request

write response———»; .
F—GATT write response-|

write_result_cb
(GATT_WRITE_TYPE_REQ)

Figure 3-23 Write Characteristic Value

3.2.3.5.2 Write Long Characteristic Values

This sub-procedure is used to write a Characteristic Value to a server when the client knows the Characteristic
Value Handle and the length of value is greater than (ATT_MTU - 3) octets.

The interaction between each layer is shown in Figure 3-24.

Value length > mtu_size -3
Value length <= 512

client
server (protocol stack \, (profile client Iayer\/ (specific client \,
_ client_attr_write .
<«——prepare write request -GATT prepare writt—| ™ (GATT_WRITE_TYPE_REQ)

prepare write response—=| GATT prepare write

response
-GATT prepare write—

~——prepare write request
prepare write reSpOHSG—>_GATT prepare write
response

i @-GATT execute write—
4——eXxecute write request

execute write response—» ite .
P | GATT execute write write_result_cb

response —
(GATT_WRITE_TYPE_REQ)

Figure 3-24 Write Long Characteristic Value

3.2.3.5.3 Write Without Response

This sub-procedure is used to write a Characteristic Value to a server when the client knows the Characteristic
Value Handle and the client does not need an acknowledgment that the write operation was successfully
performed. The length of value is less than or equal to (ATT_MTU - 3) octets.

The interaction between each layer is shown in Figure 3-25.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

91

7 U@ REALTEK AmebaD BLE Stack User Manual

Value length <= mtu_size -3

client
server (" protocol stack) (profile client layer (" specific client

client_attr_write

GATT write command —
— (GATT_WRITE_TYPE_CMD)

~<——write command——— request

| GATT write command

response .
P write_result_cb

(GATT_WRITE_TYPE_CMD)

Figure 3-25 Write without Response

3.2.3.6 Characteristic Value Notification

This procedure is used when a server is configured to notify a Characteristic Value to a client without expecting
any Attribute Protocol layer acknowledgment that the notification was successfully received.

The interaction between each layer is shown in Figure 3-26.

client
server (" protocol stack (profile client layer (" specific client)

——handle value notification—»| L
GATT notification

information notify_ind_result_cb
(notify = true)

Figure 3-26 Characteristic Value Notification
Because profile client layer does not store the service handle information, profile client layer is not sure which
specific client is sent to. So profile client layer will call all registered specific clients. The specific client needs to
check whether the notification is sent to itself.

Sample code is shown as below:

static T_APP_RESULT bas_client_notify_ind_cb(uint8_t conn_id, bool notify, uint16_t handle,
uintl6_t value_size, uint8 t *p_value)

T _APP_RESULT app_result = APP_RESULT_SUCCESS;
T BAS_CLIENT_CB_DATA cbh_data;

uint16 t *hdl_cache;

hdl_cache = bas_table[conn_id].hdl_cache;

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

92

i, REALTEK

AmebaD BLE Stack User Manual

cb_data.ch_type = BAS_CLIENT_CB_TYPE_NOTIF_IND_RESULT;

if (handle == hdl_cache[HDL_BAS_BATTERY_LEVEL])
{

cb_data.cb_content.notify_data.battery level = *p_value;

return APP_RESULT_SUCCESS;
}
if (bas_client_chb)
{
app_result = (*bas_client_cb)(bas_client, conn_id, &cb_data);

}

return app_result;

3.2.3.7 Characteristic Value Indication

This procedure is used when a server is configured to indicate a Characteristic Value to a client and expects an

Attribute Protocol layer acknowledgment that the indication was successfully received.

1. Characteristic Value Indication Without Result Pending
Callback function notify_ind_result_cb() return result is not APP_RESULT_PENDING.
The interaction between each layer is shown in Figure 3-27.
client
server . protocol stack \/ (’profile client Iayer\/ . specific client \,
handle value indication—)
GATT attribute
indication | notify_ind_result_cb
| GATT attri_bute (return result: APP_RESULT_SUCCESS)
. . confirmation
~e¢—nhandle value confirmation—
Figure 3-27 Characteristic Value Indication without Result Pending
2. Characteristic Value Indication With Result Pending

Callback function notify _ind_result_cb() return result is APP_RESULT_PENDING. APP needs to call

client_attr_ind_confirm() to send confirmation.

The interaction between each layer is shown in Figure 3-28.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

93

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

client
server (" protocol stack (_profile client layer (" specific client

handle value indication—»|

GATT attribute

indication | notify_ind_result_cb
(return result: APP_RESULT_PENDING)

~¢—— client_attr_ind_confirm
t—handle value confirmation——

Figure 3-28 Characteristic Value Indication with Result Pending
Profile client layer does not store the service handle information, so profile client layer is not sure to which
specific client should the notification be sent. So profile client layer will call all registered specific clients’s
callback function. The specific client needs to check whether the indication is sent to itself.

Sample code is shown as below:

static T_APP_RESULT simp_ble_client_notif_ind_result_cb(uint8 t conn_id, bool notify,
uint16_t handle, uint16 t value_size, uint8_t *p_value)

T _APP_RESULT app_result = APP_RESULT_SUCCESS;
T_SIMP_CLIENT_CB_DATA cb_data;

uint16_t *hdl_cache;

hdl_cache = simp_table[conn_id].hdl_cache;

cb_data.cb_type = SIMP_CLIENT_CB_TYPE_NOTIF_IND_RESULT;
if (handle == hdl_cache[HDL_SIMBLE_V3_NOTIFY])

{
cb_data.cb_content.notif_ind_data.type = SIMP_V3_NOTIFY;
ch_data.cb_content.notif ind data.data.value_size = value_size;
cb_data.cb_content.notif_ind_data.data.p_value = p_value;

}

else if (handle == hdl_cache[HDL_SIMBLE_ V4 _INDICATE])

{
cb_data.cb_content.notif_ind_data.type = SIMP_V4_INDICATE;
cb_data.cb_content.notif ind_data.data.value_size = value_size;
cb_data.cb_content.notif_ind_data.data.p_value = p_value;

}

else

{
return app_result;

}

/* Inform application the notif/ind result. */
if (simp_client_cb)
{

app_result = (*simp_client_cb)(simp_client, conn_id, &cb_data);

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

94

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

}

return app_result;

3.2.3.8 Sequential Protocol

3.2.3.8.1 Request-response protocol

Many attribute protocol PDUs use a sequential request-response protocol. Once a client sends a request to a server,
that client shall send no other request to the same server until a response PDU has been received.
The following procedures are sequential request-response protocol.

* Discovery Procedure

* Read Characteristic Value By Handle

* Read Characteristic Value By UUID

* Write Characteristic Value

* Write Long Characteristic Values
APP can' start other procedure before the current procedure is completed. Otherwise the other procedure will fail
to be started.
BT protocol stack may send exchange MTU request after connection is successfully established. GAP layer will
send message GAP_MSG_LE _CONN_MTU_INFO to inform application that the exchange MTU procedure has
been completed. So APP can start procedures listed above after receiving GAP_MSG_LE_CONN_MTU_INFO.

void app_handle_conn_mtu_info_ewt(uint8 t conn_id, uint16_t mtu_size)

{
APP_PRINT_INFO2("app_handle_conn_mtu_info_ewvt: conn_id %d, mtu_size %d", conn_id, mtu_size);
app_discov_services(conn_id, true);

3.2.3.8.2 Commands

Commands that do not require a response do not have any flow control in ATT Layer.

* Write Without Response

* Signed Write Without Response
Because of limited resource, BT protocol stack uses flow control to manage commands.
Flow control for Write Command and Signed Write Command is implemented with a credits value maintained in
GAP layer, which allows APP to send commands in number of credits without waiting for response from BT
protocol stack. BT protocol stack can cache commands in number of credits.

* Credit count decreases by one when profile client layer sends command to BT protocol stack

* Credit count increases by one when profile client layer receives the response from BT protocol stack.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

95

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

When the command is sent to air, BT protocol stack will send response to profile client layer.
* Command shall only be sent when credit count is greater than zero.
Callback function write_result_ch() can inform the current credit. Or APP can also call le_get gap_param() to get

GAP_PARAM_LE_REMAIN_CREDITS.

void test(void)

{

uint8 t wds_credits;
le_get_gap_param(GAP_PARAM_LE_REMAIN_CREDITS, &wds_credits);

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

96

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

4 BLE Sample Projects

There are four GAP roles defined for devices operating over an LE physical transport. SDK provides
corresponding demo application for user's reference in development.
1. Broadcaster
* Send advertising events
* Cannot create connections
2. Observer
* Scan for advertising events
* Cannot initiate connections
3. Peripheral
* Send advertising events
* Can accept the establishment of LE link and become a slave role in the link
* Demo application: BLE Peripheral Application
4. Central
* Scan for advertising events

* Can initiate connection and become a master role in the link

4.1 BLE Peripheral Application

4.1.1 Introduction

The purpose of this chapter is to give an overview of the BLE peripheral application. The BLE peripheral project
implements a simple BLE peripheral device with GATT services and can be used as a framework for further
development of peripheral-role based applications.
Peripheral role features:
* Send advertising events
* Can accept the establishment of LE link and become a slave role in the link
Expose features:
* Supported GATT services:
GAP and GATT Inbox Services
Battery Service

Simple BLE Service

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

97

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

4.1.2 Project Overview

This section describes project directory and project structure. Reference files directory as follows:

* Project source code directory: component\common\bluetooth\realtek\sdk\example\ble_peripheral

4.1.3 Source Code Overview
The following sections describe important parts of this application.

4.1.3.1 Initialization

ble_app_main() function is invoked when the board is powered on or the chip resets and following initialization
functions will be invoked:

int ble_app_main(void)

{
osif_signal_init();
trace_init();
bte_init();
board_init();
le_gap_init(APP_MAX_LINKS);
app_le_gap_init();
app_le_profile_init();
pwr_mgr_init();
task_init();
return 0;

}
GAP and GATT Profiles initialization flow:

* le_gap_init() - Initialize GAP and set link number

* app_le_gap_init() - GAP Parameter Initialization, the user can easily customize the application by
modifying the following parameter values.
- Configure Device Name and Device Appearance
- Configure Advertising Parameters
- Configure Bond Manager Parameters
- Configure Other Parameters

* app_le_profile_init() - Initialize GATT Profile

More information on LE GAP Initialization and Startup Flow can be found in chapter GAP Initialization and

Startup Flow.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

98

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

4.1.3.2 GAP Message Handler

app_handle_gap_msg() function is invoked whenever a GAP messages is received from the GAP. More
information on GAP messages can be found in chapter BLE GAP Message.

Peripheral application will call le_adv_start() to start advertising when receives
GAP_INIT_STATE_STACK_READY. When BLE Peripheral Application is being run on Evolution Board, the
BLE device becomes discoverable and connectable. Remote device can scan the peripheral device and create

connection with peripheral device.
void app_handle_dev_state_evt(T_GAP_DEV_STATE new_state, uint16_t cause)

{
if (gap_dev_state.gap_init_state = new_state.gap_init_state)
{
if (new_state.gap_init_state == GAP_INIT_STATE_STACK READY)
{
APP_PRINT_INFOO("GAP stack ready");
[*stack ready*/
le_adv_start();
}
}
¥
Peripheral application will call le_adv_start() to start advertising when receives

GAP_CONN_STATE_DISCONNECTED. After disconnection, Peripheral Application will be restored to the

status that is discoverable and connectable again.
void app_handle_conn_state_evt(uint8 t conn_id, T_GAP_CONN_STATE new_state, uintl6_t disc_cause)
{

switch (new_state)

{
case GAP_CONN_STATE_DISCONNECTED:
{
if ((disc_cause != (HCI_ERR | HCI_ ERR_REMOTE_USER_TERMINATE))
&& (disc_cause != (HCI_ERR | HCI_ERR_LOCAL_HOST_TERMINATE)))
{
APP_PRINT_ERROR1("app_handle_conn_state evt: connection lost cause 0x%x", disc_cause);
}
le_adv_start();
}
break;

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

99

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

4.1.3.3 GAP Callback Handler

app_gap_callback() function is used to handle GAP callback messages. More information on GAP callback can be

found in chapter BLE GAP Callback.

4.1.3.4 Profile Message Callback

When APP uses xxx_add_service to register specific service, APP shall register the callback function to handle the
message from the specific service. APP shall call server_register_app_cb to register the callback function used to
handle the message from the profile server layer.

APP can register different callback functions to handle different services or register the general callback function
to handle all messages from specific services and profile server layer.

app_profile_callback() function is the general callback function. app_profile_callback() can distinguish different

services by service id.
void app_le_profile_init(void)

{
server_init(2);
simp_srv_id = simp_ble_service_add_service(app_profile_callback);
bas srv_id =bas add_service(app_profile_callback);
server_register_app_ch(app_profile_callback);

General profile server callback

SERVICE_PROFILE_GENERAL_ID is the service id used by profile server layer. Message used by profile

server layer contains two message types:

* PROFILE_EVT_SRV_REG_COMPLETE : Services registration process has been completed in GAP
Start Flow.

* PROFILE_EVT_SEND_DATA COMPLETE : This message is used by profile server layer to inform the

result of sending the notification/indication.
T_APP_RESULT app_profile_callback(T_SERVER_ID service_id, void *p_data)
{
T _APP_RESULT app_result = APP_RESULT_SUCCESS;
if (service_id == SERVICE_PROFILE_GENERAL_ID)
{
T _SERVER_APP_CB_DATA *p_param = (T_SERVER_APP_CB_DATA *)p_data;
switch (p_param->eventld)
{
case PROFILE_EVT_SRV_REG_COMPLETE:// srv register result event.
APP_PRINT_INFO1("PROFILE_EVT SRV_REG_COMPLETE: result %d",

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

100

r:;&q% REAI_TEK AmebaD BLE Stack User Manual

p_param->event_data.service_reg_result);

break;
case PROFILE_EVT SEND_DATA COMPLETE:
break;

}
2. Battery Service

bas_srv_id is the service id of battery service.
T_APP_RESULT app_profile_callback(T_SERVER _ID service_id, void *p_data)

{
T _APP_RESULT app_result = APP_RESULT _SUCCESS;
else if (service_id == bas_srv_id)
{
T BAS_CALLBACK DATA *p_bas_ch_data= (T_BAS_CALLBACK_DATA *)p_data;
switch (p_bas_cb_data->msg_type)
{
case SERVICE_CALLBACK TYPE_INDIFICATION_NOTIFICATION:
}
¥

3. Simple BLE Service

simp_srv_id is the service id of simple BLE service.
T_APP_RESULT app_profile_callback(T_SERVER_ID service_id, void *p_data)

{
T_APP_RESULT app_result = APP_RESULT_SUCCESS;
else if (service_id == simp_srv_id)
{
TSIMP_CALLBACK_DATA *p_simp_cb_data = (TSIMP_CALLBACK_DATA *)p_data;
switch (p_simp_cb_data->msg_type)
{
case SERVICE_CALLBACK_TYPE_INDIFICATION_NOTIFICATION:
}
}

4.1.4 Test Procedure

At first, please build and download the BLE Peripheral application to the Evolution Board. Some basic functions

of BLE Peripheral Application are demonstrated above. To implement some complex functions, user needs to

Copyright Realtek Semiconductor Corporation.

All Rights Reserved. 101

7 U@ REALTEK AmebaD BLE Stack User Manual

refer to the manuals and source codes provided by SDK for development.

When BLE Peripheral Application is being run on Evolution Board, the BLE device becomes discoverable and
connectable. Remote device can scan the peripheral device and create connection with peripheral device. After

disconnection, BLE Peripheral Application will restore to be discoverable and connectable again.

4.1.4.1 Test with iOS Device

Procedure Description: iOS-based devices are always compatible with BLE, and devices running BLE Peripheral
Application can be discovered in Set Bluetooth interface, but it is recommended to use BLE-related App (e.g.
LightBlue) in App Store to perform search and connection test.

Procedure: Run LightBlue on iOS device to search for and connect a BLE_PERIPHERAL device, as shown in

Figure 4-1:

S8 PO R 40 17:08 © 3 77X aecoo IS 4G 17:07 @ % 77
Sort LightBlue | Explorer Ite < Back Besiohorai
Peripherals Nearby

-4 2 services BLE_PER'PHERAL

Unnamed UUID: 3776A4B8-E39F-4867-AA3A-544140FA7747

78 NO services Connactad

Unnamed

95 No services ADVERTISEMENT DATA

LI BLE_PERIPHERAL

<48 1 service UUID: AOOA

BT RCU OxB001
92 1 service Pros
Unnamed OxE

97 No services

OxB003
Sg Propertias: Notif
-104 1] service e
) OxB0OC4
a“l)aba Propertias: Indicate
94 1 service
MITA Battery Service

93 Na services s ?
Battery Leve
Virtual Peripherals 0%

BBS_,GapTesl

Figure 4-1 Test with iOS Device

Copyright Realtek Semiconductor Corporation.

All Rights Reserved.

102

7 ”1@ REAI_TEK AmebaD BLE Stack User Manual

References

[1] Bluetooth SIG. Core_v5.0 [M]. 2016, 169.

Copyright Realtek Semiconductor Corporation.

All Rights Reserved. 103

