I ESP8266 Application Note

Firmware Download Protocol

Version 1.2
Espressif Systems
Copyright © 2018

)

www.espressif.com

About This Guide

This document introduces a downloading protocol for ESP8266 firmware.

Release Notes

Date
2016.05

2017.06

2018.11

Version
V1.0

V1.1

V1.2

Documentation Change Notification

Release notes
Initial release.
Added operation codes 09, Oa, Ob in Table 2-2.

® Updated Section A.3. References

e Fixed format issues

Espressif provides email notifications to keep customers updated on changes to
technical documentation. Please subscribe at hitps.//www.espressif.com/en/subscribe.

Certification

Download certificates for Espressif products from htips.//www.espressif.com/en/

certificates.

https://www.espressif.com/en/subscribe
https://www.espressif.com/en/certificates
https://www.espressif.com/en/certificates

Table of Contents

B O LY== 1

1.1, Hardware Preparalionsoooociiiiiiiie et s s e e e e e e e e et e e e e e e e e e e e as e e e eeeeeeennnnnan 1
1.1.1. Hardware SEHINGSoiiiiieeee e e 1

1.1.2. Hardware CONNECHION.... ... s nnssnnsnnnnnnes 1

B V22 B LoV o1 (oY= T I oo =T [1| = ISP 2

BN 1= T =1 0 0T ET= Lo o TN e 0 (0T o) 3
P2 I = (o (= (== T [TRt 3
P2 = (o (= = T o | PPt 4

. Firmware Image FOrmat ... s 5
. Appendix - Programming EXamples.......coouimmmmiiiiiiisss s sennnnnnns 6
AT OB CKSUIM .. s nnnnnnnn 6
N =TT N =] RPN 6

A.3. References

1.0Overview

g

Overview

—k

1.1. Hardware Preparations

When ESP8266 is in the UART downloading mode, users can download firmware from an
external MCU to ESP8266.

1.1.1. Hardware Settings
The hardware settings are shown in Table 1-1.
Table 1-1. Hardware Settings
Item Settings

GPIO0 and GPIO15: pulled down
UART download mode
GPIO2: pulled high

Baud rate Auto-bauds
Data bit 8

Stop bit 1

Parity bit None

Flow control Disabled

1.1.2. Hardware Connection

The hardware connection is shown in Figure 1-1.

MCU ESP8266
RXD
Download Protocol D Innelgrto)fgéglload
GND

Figure 1-1. Hardware Connection

Espressif 1/8 2018.11

1.2. Download Procedure

=)

\

Synchronization

Yes

v

Erase data

\

No (Timeout) Transmit data

Yes
v

Transmit finish frame

1.0Overview

No (Failure)

> <

A\

Con

Figure 1-2. Download Procedure

e Synchronization: transmit sync frame to synchronize the baud rate.

e Erase data: erase the relevant flash sectors, according to the size and address of the

firmware that will be downloaded into them.

e Transmit data: encapsulate the firmware into multiple frames and transmit them to

ESP8266.

e Transmit finish frame: transmit the download-finish frame to ESP8266.

Espressif 2/8

2018.11

N &

2. Transmission Protocol

Transmission Protocol

2.1.

Espressif

The transmission protocol uses the Serial Line Internet Protocol (SLIP) framing.

byte
Oh

1h

Each packet begins and ends with 0xC@.

All occurrences of @xC@ and @xDB inside the packet are replaced with @xDB @xDC and
OxDB 0@xDD, respectively.

Inside the frame, the packet consists of a header and a variable-length body, as
shown in Figure 2-1.

All multi-byte fields are little-endian.

0

1 2 3 4

5 6 7 8 9 A B C D E F

Header

Body

Packet Header

Figure 2-1. Packet Format

The format of the packet header is shown in Table 2-1.

Byte

2~3

4~7

Table 2-1. Packet Header Format

Data type

Type

Command

Data size

Checksum/Response

Body

Status

Error

Request Response

Always 0x00. Always 0x01.

Operation code. Please refer to Table 2-2 for details.

The size of packet body.

Note: The data size is the same as the length of the packet body
before @xC@ and @xDB are replaced.

XOR checksum of payload (the firmware data

stored after the 16th byte of the packet body).
) Response data.
For the checksum algorithm, please refer to

Appendix - Programming Examples.
Depends on operation

Status flag, success
(0) or failure (1).

Success (null) or
failure (error code).

3/8 2018.11

https://en.wikipedia.org/wiki/SLIP

@ 2. Transmission Protocol

Table 2-2. Operation Code

Erase the data in the flash.

e Word0: the number of flash sectors being
erased. Each sector is 4096 bytes.

e Word1: the number of packet(s) being

02 Flash Download Start transmitted.
e Word2: packet size, e.g., 0x400.

e \Word3: offset address.

Note: For the sample codes of erasing data, please
refer to Appendix - Programming Examples.

Transmit data.

e WordO: the size of data being written (filled with
0x400).

03 File Packet Send e Word1: the sequence number of each
transmitted packet.

e \Word2: 0x0
e \Word3: 0x0

04 Flash Download Stop Stop transmitting data.

sync_frame[36] = { 0x07, 0x07, 0x12, 0x20,
0x55, 0x55, 0x55, 0x55, Ox55, Ox55, @x55, Ox55,
0x55, @0x55, @0x55, 0x55, 0x55, 0x55, 0x55, Ox55,

08 Sync Frame Send
@x55, 0x55, 0@x55, Ox55, 0x55, 0Ox55, 0x55, 0Ox55,
@x55, @0x55, 0x55, 0@x55, @Ox55, @0x55, 0x55,
0x55 };

09 Write register Fqur 32-bit words: address, value, mask and delay (in
microseconds).

Oa Read register Address as 32-bit word.

Ob Configure SPI params 24 bytes of unidentified SPI parameters.

2.2. Packet Body

The packet body format is shown in Figure 2-2.

Figure 2-2. Packet Body Format

The first 16 bytes (Word0 ~ Word3) are the description of the packet body, which is
different when executing different commands.

Espressif 4/8 2018.11

w0 &

3. Firmware Image Format

Firmware Image Format

Espressif

The firmware consists of a file header, and a number of data blocks (the size of blocks may
be different), as shown in Figure 3-1. Multi-byte fields are little-endian.

File Header

Figure 3-1. Firmware Image Format

The format of the file header is shown in Table 3-1.

Table 3-1. Firmware Format Description

Magic Code

The value is always OXE9.

Block Number

The number of blocks.

SPI Mode

The SPI working mode.
e 0x00: QIO mode
e 0x01: QOut mode
e 0x02: DIO mode
e 0x03: DOut mode

SPI Flash Info

SPI flash size and frequency.
e High 4 bits: 0x0 = 512 kB; 0x1 = 256 kB; 0x2 = 1 MB; 0x3 = 2
MB; x4 = 4 MB
e Low 4 bits: 0x0 = 40 MHz; 0x1 = 26 MHz; 0x2 = 20 MHz; 0xF
=80 MHz

4~7

Entry Address

CPU entry address.

5/8 2018.11

Appendix A
A. Appendix - Programming
Examples

A.1. Checksum

uint32_t espcomm_calc_checksum(unsigned char *data, uintl6_t data_size)
{

uintle_t cnt;

uint32_t result;

result = OxEF;

for(cnt = @; cnt < data_size; cnt++)

{

result A= data[cnt];
}

return result;

A.2. Erase Flash

#define BLOCKSIZE_FLASH 0x400

#define FLASH_DOWNLOAD_BEGIN 0x02

uint32 flash_packet[];

//uint32_t size:firmware real size, uint32_t address: download offset address
int erase_flash(uint32_t size, uint32_t address)

{

const int sector_size = 4096;

const int sectors_per_block 16;
const int first_sector_index = address / sector_size;
const int total_sector_count = ((size % sector_size) == 0) ?
(size / sector_size) : (size / sector_size + 1);

const int max_head_sector_count = sectors_per_block - (first_sector_index %
sectors_per_block);

const int head_sector_count = (max_head_sector_count > total_sector_count) ?
total_sector_count : max_head_sector_count;

// SPIEraseArea function in the esp8266 ROM has a bug which causes extra area to be erased.

// If the address range to be erased crosses the block boundary,

// then extra head_sector_count sectors are erased.

// If the address range doesn't cross the block boundary,

// then extra total_sector_count sectors are erased.

Espressif 6/8 2018.11

@ Appendix A

const int adjusted_sector_count = (total_sector_count > 2 * head_sector_count) ?
(total_sector_count - head_sector_count):
(total_sector_count + 1) / 2;

erase_size = adjusted_sector_count * sector_size;

flash_packet[@] = erase_size;

flash_packet[1] = (size + BLOCKSIZE_FLASH - 1) / BLOCKSIZE_FLASH;
flash_packet[2] BLOCKSIZE_FLASH;

flash_packet[3] = address;

espcomm_send_command(FLASH_DOWNLOAD_BEGIN, (unsigned char*) &flash_packet, 16);
}

A.3. References

espressif/esptool:_https.//qithub.com/espressit/esptool

Espressif 7/8 2018.11

https://github.com/espressif/esptool

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without
notice.

THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER,
INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT
OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of
information in this document is disclaimed. No licenses express or implied, by estoppel or
otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is
a registered trademark of Bluetooth SIG.

E if loT T All trade names, trademarks and registered trademarks mentioned in this document are
SPHESSIFIOTISA property of their respective owners, and are hereby acknowledged.

www.espressif.com Copyright © 2018 Espressif Inc. All rights reserved.

http://www.espressif.com

	Overview
	Hardware Preparations
	Hardware Settings
	Hardware Connection
	Download Procedure
	Transmission Protocol
	Packet Header
	Packet Body
	Firmware Image Format
	Appendix - Programming Examples
	Checksum
	Erase Flash
	References

