
	
	

 

ESP8266 Flash RW Operation
Version 1.0

Espressif Systems IOT Team

Copyright © 2016

	

" " 	 " Espressif Systems ESP8266 Flash RW Operation

Disclaimer and Copyright Notice
Information in this document, including URL references, is subject to change without notice.

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION
OR SAMPLE. All liability, including liability for infringement of any proprietary rights, relating to use of
information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise,
to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member Logo is a trademark of the Wi-Fi Alliance.

All trade names, trademarks and registered trademarks mentioned in this document are property of
their respective owners, and are hereby acknowledged.

Copyright © 2016 Espressif Systems Inc. All rights reserved.

Espressif Systems Confidential �/� Friday, Jan 22, 20162 9

	

" " 	 " Espressif Systems ESP8266 Flash RW Operation

Table of Contents

1. Preambles	 4
...
2. Flash APIs	 4
...

2.1. spi_flash_erase_sector	 5
..
2.2. spi_flash_write	 5
..
2.3. spi_flash_read	 5
...

3. Flash layout	 6
..
4. Flash RW Protection	 7
...

4.1. Foreword	 7
...
4.2. Basic Principle	 7
..
4.3. Example in IOT_Demo	 7
..
4.4. Flash RW Protection Advices	 8
..

1. Advice A	 8 ...
2. Advice B	 9...

Espressif Systems Confidential �/� Friday, Jan 22, 20163 9

	

" " 	 " Espressif Systems ESP8266 Flash RW Operation

1. Preambles

This document introduces flash read/write APIs, and related matters needing attention, last but not
least, introduces the flash RW protection method used in IOT_Demo in ESP8266_NONOS_SDK, and
some other methods as reference.

2. Flash APIs
APIs below can read/write/erase the whole flash, flash sectors start counting from 0, 4Kbytes per
sector:

	 spi_flash_erase_sector	 : 	 erase flash sector

	 spi_flash_write	 	 : 	 write data to flash

	 spi_flash_read	 	: 	 read data from flash

Notice:
• 	Flash sector needs to be erased first, then to be written.

• Flash read/write has to be 4 bytes aligned.

Example:
uint32 data[M];

// TODO: fit in the data

spi_flash_erase_sector (N);

spi_flash_write (N*4*1024, data, M*4);

Return:

	 Typedef enum{

	 	 SPI_FLASH_RESULT_OK,

	 	 SPI_FLASH_RESULT_ERR,

	 	 SPI_FLASH_RESULT_TIMEOUT

	 }SpiFlashOpResult;

Espressif Systems Confidential �/� Friday, Jan 22, 20164 9

	

" " 	 " Espressif Systems ESP8266 Flash RW Operation

2.1. spi_flash_erase_sector

2.2. spi_flash_write

2.3. spi_flash_read

Function: erase flash sector

Prototype: SpiFlashOpResult spi_flash_erase_sector (uint16 sec)

Parameter: uint16 sec – sector number, start counting from sector 0, 4Kbytes per sector

Return: SpiFlashOpResult

Function: Write data into flash.
Please call spi_flash_erase_sector to erase the target flash sector first.

Prototype: SpiFlashOpResult spi_flash_write (uint32 des_addr, uint32
*src_addr, uint32 size)

Parameter: uint32 des_addr – destination address on flash
uint32 *src_addr – source address of data
Uint32 size – data length, uint : byte.

Return: SpiFlashOpResult

Function: Read data from flash

Prototype: SpiFlashOpResult spi_flash_read(uint32 src_addr, uint32 *
des_addr, uint32 size)

Parameter: uint32 src_addr – source address on flash
uint32 *des_addr – destination address to keep data
Uint32 size – data length, uint : byte.

Return: SpiFlashOpResult

Espressif Systems Confidential �/� Friday, Jan 22, 20165 9

	

" " 	 " Espressif Systems ESP8266 Flash RW Operation

3. Flash layout
Please pay attention on follow flash areas:

• Program area: store bin files generated by compilation, please don’t RW this area;

• System parameter area: store system parameters, please don’t RW this area;

• User parameter area: store user parameters in application, users can RW this area. Users can

refer to the chapter "Flash Map" in documentation “2A-ESP8266__IOT_SDK_User_Manual”.

	

Note:

1. ”Program area” only mentions start address, the space it costs depends on the size of each

bin.

2. System parameter area:

	 esp_init_data_default.bin	 : starts from the forth sector from the last on flash

	 blank.bin	 	 	 : starts from the second sector from the last on flash

	 For example, 512KB Flash:

	 esp_init_data_default.bin downloads to flash 0x7C000;

	 blank.bin downloads to flash 0x7E000

firmware do not support FOTA (none boot)

Program area eagle.flash.bin start from 0x00000

eagle.irom0text.bin start from 0x40000

System parameter area The last 4 sectors (16 KBytes) on flash

firmware can support FOTA (with boot)

Program area
boot.bin starts from 0x00000

user1.bin starts from 0x01000

user2.bin
For 512KB + 512KB Flash Map, starts from 0x81000
For 1024KB + 1024KB Flash Map, starts from 0x101000

System parameter area The last 4 sectors (16 KBytes) on flash

Espressif Systems Confidential �/� Friday, Jan 22, 20166 9

	

" " 	 " Espressif Systems ESP8266 Flash RW Operation

4. Flash RW Protection
4.1. Foreword

Flash is erased sector by sector, which means it has to erase 4Kbytes one time at least. When you
want to change some data in flash, you have to erase the whole sector, and then write it back with the
new data.

So, if power off during the flash writing, data of the whole sector will be missing.

According to that, Espressif gives an example of flash RW protection and some other advices about
flash RW protection as reference.

In IOT_Demo, there is an example of flash RW protection in user_esp_platform.c.

	

4.2. Basic Principle
Flash RW protection example in IOT_Demo, uses 3 sectors to provide a reliable storage of 4Kbytes.

Use sector 1 & sector 2 as data sector to save the same data of this time and the last time, this two
sector alternate writing, so that there is always a sector to be backup. Use sector 3 as flag sector to
keep the flag which sector (sector 1 or 2) saved the latest data.

1. Default sector is sector 2, so at first, copy data from sector 2 to RAM.

2. Then, the first time data changes, save the new data in sector 1.

• 	If power off unexpectedly during this phase, writing sector 1 will fail, but sector 2 & 3 are all

fine; then power on, it will still copy data from sector 2 to RAM.

3. Modify sector 3 to change flag to 0, means sector 1 saved the latest data.

• 	If power off unexpectedly during this phase, writing sector 3 will fail, but sector 1 & 2 are all

fine; then power on, because of the invalid data in sector 3, it will still copy data from sector 2
to RAM by default. Although data in sector 2 is not the latest data, but it can still work, what we
lost is just the latest update.

4. The next time we want to change data in flash, we have to read flag from sector 3 first, if flag is
0, means the latest data stored in sector 1 , so we write data to sector 2 this time; if flag is not
0, assume the latest data stored in sector 2, we will write data to sector 1 this time.

• If power off unexpectedly during this phase, please look back to step 2 & 3 as reference.

5. Only after writing data sector (sector 1 or 2) accomplished, we will write flag sector (sector 3) to

change the flag.

Note:

Write data sector first, then flag sector. This order ensure the integrity of data.

4.3. Example in IOT_Demo
esp_platform_saved_param, In IOT_Demo, use 4 sectors which starts at 0x3C000 as user data area. In
user data area, use 3 sectors(0x3D000、0x3E000、0x3F000) to provide flash RW protection, offer
4Kbytes safety storage.

	 	

Use APIs : user_esp_platform_load_param and user_esp_platform_save_param to access to the
“Storage with RW protection” area in above picture.

Espressif Systems Confidential �/� Friday, Jan 22, 20167 9

	

" " 	 " Espressif Systems ESP8266 Flash RW Operation

	 user_esp_platform_load_param	-	 read data from flash user parameter area

	 user_esp_platform_save_param	-	 write data to flash user parameter area

struct esp_platform_saved_param is the parameter Espressif used that stored in flash user parameter
area.

If you want to use this storage, add your parameters in the struct esp_platform_saved_param and call the
two APIs above to read/write.

4.4. Flash RW Protection Advices
1. Advice A

Principle: “data sector switch” + “counter in head” + ”check-code in the end”

It takes 2 sectors to provide storage with RW protection of 4Kbytes.

	 	 �

Details:
Two sectors switch to store the user data without flag sector.

Keep counters in the first byte of both data sectors. Every time writing data, count add 1 and write into
the first byte of data sector. Compare the value of counter in both data sectors to distinguish which
one store the latest data. Keep check-code at the end of both data sectors, such as CRC or
checksum, ensure the integrity of data. For example:

1. Data stores in sector A by default, the value of counter in sector A is 0xFF, copy data from sector A

to RAM.

2. The first data changing will be written into sector B, the value of counter in sector B will be 1,

check-code at the end of sector B.

3. Next time we need to save data, we will compare the value of counter between two sectors, get

that the latest data was stored in sector B, so data goes to sector A this time, counter in sector A
records 2, check-code at the end.

4. If power off unexpectedly, data of sector which is writing maybe lose. When power on, compare
the value of counters between sector A and B, read data from the one has large count, check its
integrity with the check-code, if pass, use this sector, otherwise, use the other sector, check, and
load data.

Sector A (4KB) Sector B (4KB)

Espressif Systems Confidential �/� Friday, Jan 22, 20168 9

Sector 0 (4KB) Sector 1 (4KB) Sector 2 (4KB) Sector 3 (4KB)

0x3C000

without
protection

Storage with RW protection
(provide only 4Kbytes storage)

	

" " 	 " Espressif Systems ESP8266 Flash RW Operation

2. Advice B

Principle: “sector backup” + “check-code in the end”

It takes 2 sectors to provide storage with RW protection of 4Kbytes.

	 	 �

Details:
Always write data to sector A, after that, write the same data to sector B as backup, keep check-
codes (such as CRC、checksum) both in the end of sector A and sector B.

1. Read data from sector A, use check-code to confirm its integrity.

2. Write data to sector A, check-code at the end of it.

3. After finish writing sector A, write the same data to sector B as backup, check-code at the end of

it.

4. If power off unexpectedly, data of sector which is writing maybe lose. Then power on, read data

from sector A, use check-code to confirm its integrity. If pass, all goes as normal; if fail, read data
from sector B, check, and program goes on.

Sector A (4KB) Sector B (4KB)

Espressif Systems Confidential �/� Friday, Jan 22, 20169 9

