Ra-01SH-P Specification Version V1.0.1 Copyright ©2024 # **Document resume** | Version | Date | Develop/revise content | Edition | Approve | |---------|------------|---|--------------|-----------| | V1.0.0 | 2024.08.27 | First Edition | Pengfei Dong | Ning Guan | | V1.0.1 | 2025.01.02 | Add description of the module cannot no-load transmission, add description of the module input power limit, add the RF_EN pin control voltage timely sequence description, and add description of the input power limit when the module matches the antenna | Pengfei Dong | Ning Guan | # **Content** | 1. Product overview | 4 | |--|----| | 1.1. Characteristic | 5 | | 2. Main parameters | 6 | | 2.1. Static electricity requirement | 6 | | 2.2. Electrical characteristics | 7 | | 3. Appearance dimensions | 8 | | 4. Pin definition | 9 | | 5. Schematic | 11 | | 6. Design guidance | 12 | | 6.1. Application guide circuit | 12 | | 6.2. Recommended PCB package size | 14 | | 6.3. Antenna installation | 14 | | 6.4. Power supply | 15 | | 6.5. GPIO level conversion | | | 6.6. Software Writing | 17 | | 7. FAQ | 18 | | 7.1. Factors affecting transmission distance | 18 | | 7.2. Module usage precautions | 18 | | 7.3. Factors that interfere with the module | 18 | | 8. Storage conditions | 19 | | 9. Reflow soldering curve | 19 | | 10. Product packaging information | 20 | | 11. Contact us | 20 | | Disclaimer and Copyright Notice | 21 | | Notice | 21 | | Important statement | 22 | #### 1. Product overview Ra-01SH-P is a LoRa series module designed and developed by Shenzhen Ai-Thinker Technology Co., Ltd. This module is used for ultra-long distance spread spectrum communication. Its RF chip SX1262 mainly uses LoRa™ long-range modem for ultra-long distance spread spectrum communication, with strong anti-interference and the ability to minimize current consumption. With the help of SEMTECH's LoRa™ patented modulation technology, the module has built-in power amplifier (PA) and low noise amplifier (LNA) on this basis, with high sensitivity exceeding -137dBm, +29dBm transmission power, long transmission distance and high reliability. At the same time, compared with traditional modulation technology, LoRa™ modulation technology also has obvious advantages in anti-blocking and selection, solving the problem that traditional design solutions cannot take into account distance, anti-interference and power consumption at the same time. It can be widely used in automatic meter reading, home building automation, security systems, remote irrigation systems, etc. Figure 1 Main chip architecture diagram #### 1.1. Characteristic - Support FSK, GFSK, LoRa® modulation - Support frequency band: 803MHz~930MHz - Maximum transmit power is optional (see the design guide below for configuration method) - ①Default configuration: The internal PA uses a 3.3V power supply voltage. In this state, the maximum Tx Power can reach +29dBm, and the operating current is 750mA; - ②Optional configuration: The internal PA uses a 5V power supply voltage. In this state, the maximum Tx Power can reach +31dBm, and the operating current is 1A; - High sensitivity: as low as -137dBm@SF10 125KHz - Extremely small size $17*16*3.2(\pm0.2)$ MM, double row stamp hole patch package - Support spreading factors SF5/SF6/SF7/SF8/SF9/SF10/SF11/SF12 - It has low power consumption in receiving state, and the minimum receiving current is 16mA - The module uses SPI interface, half-duplex communication, CRC, and up to 256 bytes of data packet engine - Support a variety of antenna installation methods, compatible with half-hole pad/through-hole pad/IPEX connector # 2. Main parameters Table 1 Description of the main parameters | Model | Ra-01SH-P | |-------------------------|--| | Package | SMD-16 | | Size | $17*16*3.2(\pm 0.2)$ MM | | Antenna | Compatible with half-hole pad/through-hole pad/IPEX connector | | Frequency 803MHz~930MHz | | | Operating temperature | -40℃~85℃ | | Storage temperature | -40 °C ~ 125 °C , < 90%RH | | Power supply | Supply voltage 3.0~3.6V, typical value 3.3V, current greater than 1A | | Interface SPI | | | Programmable bit rate | Up to 300kbps | # 2.1. Static electricity requirement Ra-01SH-P is an electrostatic sensitive device. Therefore, you need to take special precautions when carrying it. Figure 2 ESD preventive measures #### **Notice:** The Ra-01SH-P module is an electrostatic sensitive device (ESD) and requires special ESD precautions that should generally be applied to ESD sensitive groups. Proper ESD handling and packaging procedures must be used throughout the handling, transportation, and operation of any application incorporating the Ra-01SH-P module. Do not touch the module with your hands or use a non-antistatic soldering iron for soldering to avoid damaging the module. # 2.2. Electrical characteristics **Table 2 Electrical characteristics table** | Parameters | Min. | Typical value | Max. | Unit | |----------------------------|-----------|---------------|-----------|------| | Power supply voltage 3V3 | 3.0 | 3.3 | 3.6 | V | | Supply voltage VCCPA | 3.0 | 5 | 5.25 | V | | IO Output High Level (VOH) | 0.9*VDDIO | - | VDDIO | V | | IO Output Low Level (VOL) | 0 | - | 0.1*VDDIO | V | | IO Input High Level (VIH) | 0.7*VDDIO | - | VDDIO+0.3 | V | | IO Input Low Level (VIL) | -0.3 | - | 0.3*VDDIO | V | **Table 3 SPI interface characteristics** | Symbol | Description | Condition | Min. | Typical value | Max. | Unit | |---------|--------------------------------------|---|------|---------------|------|------| | Fsck | SCK frequency | - | - | - | 10 | MHz | | tch | SCK high level time | - | 50 | - | - | ns | | tcl | SCK low level time | - | 50 | - | - | ns | | trise | SCK rise time | - | - | 5 | - | ns | | tfall | SCK fall time | - | - | 5 | - | ns | | tsetup | MOSI setup time | From MOSI change to SCK rising edge | 30 | - | - | ns | | thold | MOSI hold time | From SCK rising edge to MOSI change | 20 | - | - | ns | | tnsetup | NSS setup time | From NSS falling edge to SCK rising edge | 30 | - | - | ns | | tnhold | NSS hold time | From SCK falling edge to NSS rising edge, normal mode | 100 | - | - | ns | | tnhigh | NSS high time of SPI access interval | - | 20 | - | - | ns | | T_DATA | DATA hold and setup time | - | 250 | - | - | ns | | Fsck | SCK frequency | - | - | - | - | ns | # 3. Appearance dimensions Figure 3 Appearance (rendering is for reference only, the actual object shall prevail) Figure 4 Dimensions (unit: mm) # 4. Pin definition The Ra-01SH-P module has a total of 16 pins, as shown in the pin diagram. The pin function definition table is the interface definition. Figure 5 Pin diagram **Table 4 Pin function definition table** | No. | Name | Function | | | |-----|-------|---|--|--| | 1 | ANT | Connect antenna | | | | 2 | GND | Ground | | | | 3 | 3V3 | Typical value 3.3V power supply | | | | 4 | RESET | Reset pin | | | | 5 | VCCPA | FEM chip power supply pin, input 5V maximum power can reach +31dBm. | | | | 6 | DIO1 | Digital IO1 software configuration | | | | 7 | DIO2 | Digital IO2 software configuration | | | | 8 | DIO3 | Digital IO3 software configuration | | | | 9 | GND | Ground | | | | 10 | BUSY | Status indication pin | | | | 11 | RF_EN | FEM chip enable pin, high level is effective, the module is pulled up by default; high level is in working state, low level is in sleep state | | | | 12 | SCK | SPI clock input | | | | 13 | MISO | SPI data output | | | | 14 | MOSI | SPI data input | | | | 15 | NSS | SPI chip select input | | | | 16 | GND | Ground | | | | EPA | GND | Ground, reliable grounding is required to facilitate heat dissipation | | | The general IO pins of SX1262 are available in LoRa[™] mode. Their mapping relationship depends on the configuration of the two registers RegDioMapping1 and RegDioMapping2. Table 5 IO port function mapping table | Operation Mode | DIOx
Mapping | DIO3 | DIO2 | DIO1 | |----------------|-----------------|---------------------|---------------------------|---------------------------| | | 00 | CadDone | Fhss
Change
Channel | RxRimeout | | All | 01 | Valid
Header | Fhss
Change
Channel | Fhss
Change
Channel | | | 10 | PayloadCrc
Error | Fhss
Change
Channel | CadDetected | | | 11 | - | - | - | # 5. Schematic Figure 6 Schematic diagram # 6. Design guidance ### 6.1. Application guide circuit #### (1) Special pin description - About VCCPA pin - ✓ The PA inside the module supports multiple power supply voltages. When powered by 3.3V, the maximum transmit power of the module can reach +29dBm; when powered by 5V, the maximum transmit power of the module can reach +31dBm. - ✓ In the default BOM configuration of the module, PA is powered by the 3V3 pin of the module, and the VCCPA pin of the module can be left floating. If PA uses 5V power supply, please contact Ai-Thinker to modify the module BOM and provide 5V power supply to the VCCPA pin of the module. - About RF_EN pin RF_EN is the enable pin of the module's built-in PA chip. When the pin is high, the module's RF is in normal transceiver state; when the pin is low, the module's RF function is turned off, which can reduce the module's power consumption. The module defaults to BOM, with an internal pull-up resistor of 10K (i.e., it is in normal transceiver state by default). If a low-power working scenario is required, please use an external MCU to control this pin to a low level state. When the level is low, the default pull-up resistor of this pin may have leakage current. If the built-in pull-up resistor is not required, please contact Ai-Thinker to modify the BOM. Table 6 RF switch truth table | Mode | RF_EN | |---------------|-------| | FEM power off | 0 | | FEM working | 1 | In summary, the module has four BOM configurations: Configuration 1: VCCPA is suspended, RF_EN has a built-in pull-up resistor of 10K (default BOM configuration) Configuration 2: VCCPA is floating, RF EN has no built-in pull-up resistor Configuration 3: VCCPA connection, RF EN built-in pull-up resistor 10K Configuration 4: VCCPA connected, RF EN without built-in pull-up resistor #### (2) Typical application circuit Figure 7 Typical application circuit - The module's VCCPA is suspended by default. If you need 5V power supply to achieve higher transmission power, please contact Ai-Thinker to modify the BOM. - It is recommended that the IO port of the external MCU control the RF_EN of the module to achieve low-power application scenarios. - The transmitting power level of the module SX1262 configuration cannot be greater than 3 dBm. Otherwise, too large a power level will burn the PA. - When the module is in TX transmission, do not let the module antenna port be suspended, because the VSWR is high and the risk of FEM chip damage is high. If the ANT port cannot be avoided, the TX input signal power should not exceed 0 dBm to ensure that the chip is not damaged. - The module RF_EN voltage shall follow the recommended value (1.2-3.6V), and the pin voltage shall not exceed the supply voltage of the module 3V3, and the module 3V3 shall power before the RF_EN, and the power can also be used. - During the matching debugging of the antenna, the impedance may not match, causing in VSWR. In this process, it is recommended not to directly generate saturated power to avoid excessive damage to the chip due to VSWR. After the antenna impedance debugging is completed, the saturation power will be generated again. - The power supply current should meet the specification requirements. If the current is limited, the saturation power will not be pushed up. #### (3) Other instruction ■ The communication interface with the main control MCU, in addition to the SPI interface, also needs to connect BUSY/DIO1 to the IO port of the main control MCU. Figure 8 BUSY/DIO1 application considerations ■ The antenna is soldered on the main control board. It is recommended to reserve a pie-shaped matching circuit at the antenna interface. # 6.2. Recommended PCB package size Figure 9 Recommended PCB package dimensions (unit: mm) #### 6.3. Antenna installation - Ra-01SH-P requires an external antenna. There is a half-hole solder pad on the module that can be connected to the main-board. - In order for the antenna to achieve the best effect, the antenna should be installed away from metal parts. - The antenna installation structure has a great impact on the performance of the module. Make sure the antenna is exposed and preferably vertically upward. When the module is installed inside the housing, you can use a high-quality antenna extension cable to extend the antenna to the outside of the housing. - The antenna must not be installed inside a metal shell, as this will greatly reduce the transmission distance. #### **6.4.** Power supply - The recommended voltage is 3.3V and the peak current is above 1A. - If using DC-DC, it is recommended that the ripple be controlled within 100mV. - It is recommended to reserve space for dynamic response capacitors in the DC-DC power supply circuit to optimize the output ripple when the load changes greatly. - It is recommended to add ESD devices to the 3.3V power interface. - When designing the power supply circuit for the module, it is recommended to retain a margin of more than 30% for the power supply current, which will help the whole machine to work stably for a long time. - Please pay attention to the correct connection of the positive and negative poles of the power supply. Reverse connection may cause permanent damage to the module. Figure 10 DC-DC buck circuit #### 6.5. GPIO level conversion ■ Some IO ports are connected to the module. If you need to use them, it is recommended to connect a 10-100 ohm resistor in series to the IO ports. This can suppress overshoot and make the levels on both sides more stable. It is helpful for EMI and ESD. - For the pull-up and pull-down of special IO ports, please refer to the instructions in the specification, which will affect the startup configuration of the module. - The IO port of the module is 3.3V. If the IO port levels of the main control and the module do not match, a level conversion circuit needs to be added. - If the IO port is directly connected to a peripheral interface, or terminals such as a pin header, it is recommended to reserve ESD devices near the terminals in the IO port routing. Figure 11 Level conversion circuit #### 6.6. Software Writing - The maximum input power of FEM chip should not exceed + 3 dBm, otherwise there will burned FEM chip. Users should strictly configure the output power of SX1262, and recommend 0 dBm-3 dBm. - This module is SX1262+ peripheral circuit, and users can operate it completely according to the SX1262 chip manual. - DIO1/DIO2 are general IO ports that can be configured with multiple functions. - The control of the RF switch TX/RX can be controlled by an external MCU or jointly by an external MCU and DIO2 of SX1262. - Differences between LLCC68 and SX1262/SX1268: (1) SX1262/SX1268 supports spreading factors SF5, SF6, SF7, SF8, SF9, SF10, SF11, SF12; SX1262/SX1268 configurable spreading factor and receiving bandwidth LoRa@ Rx/Tx, BW = 7.8 - 500 kHz, SF5 TO SF12, BR=0.018 - 62.5 Kb/S (2) LLCC68 supports spreading factors SF5, SF6, SF7, SF8, SF9, SF10, SF11; LLCC68 can set the spreading factor and receiving bandwidth LoRa@ Rx/Tx, BW = 125 - 250 - 500 kHz, LoRa@, SF=5-6-7-8-9 for BW=125kHz, LoRa@, SF=5-6-7-8-9-10 for BW =250 kHz, LoRa@, SF=5-6-7-8-9-10-11 for BW=500 kHz. # **7. FAQ** ### 7.1. Factors affecting transmission distance - When there is a straight-line communication obstacle, the communication distance will be attenuated accordingly. - Temperature, humidity, and co-frequency interference will lead to an increase in the communication packet loss rate. - The ground absorbs and reflects radio waves, so the test effect is poor near the ground. - Seawater has a strong ability to absorb radio waves, so the test effect is poor at the seaside. - There are metal objects near the antenna, or it is placed in a metal shell, the signal attenuation will be very serious. - The power register is set incorrectly, and the air rate is set too high (the higher the air rate, the closer the distance). - The low voltage of the power supply at room temperature is lower than the recommended value. The lower the voltage, the lower the power. - The antenna used is poorly matched with the module or the antenna itself has quality problems. # 7.2. Module usage precautions - Check the power supply to ensure that it is within the recommended power supply voltage. If it exceeds the maximum value, the module will be permanently damaged. - Check the stability of the power supply. The voltage cannot fluctuate frequently and significantly. - Ensure anti-static operation during installation and use. High-frequency components are sensitive to static electricity. - Ensure that the humidity during installation and use is not too high. Some components are humidity-sensitive devices. - If there is no special requirement, it is not recommended to use it at too high or too low temperature. #### 7.3. Factors that interfere with the module - There is interference from the same frequency signal nearby, stay away from the interference source or change the frequency or channel to avoid interference. - The clock waveform on the SPI is not standard, check whether there is interference on the SPI line, and the SPI bus line should not be too long. - Unsatisfactory power supply may also cause garbled code, so the reliability of the power supply must be ensured. - Poor or too long extension line or feeder line will also cause a high bit error rate. # 8. Storage conditions Products sealed in moisture-proof bags should be stored in a non-condensing atmosphere of $<40^{\circ}\text{C}/90\%\text{RH}$. The module's moisture sensitivity level MSL is level 3. After the vacuum bag is unsealed, it must be used within 168 hours at 25 ± 5 °C/60%RH, otherwise it needs to be baked before it can be put online again. # 9. Reflow soldering curve Figure 12 Reflow soldering curve # 10. Product packaging information As shown in the figure below, the packaging of Ra-01SH-P is braided tape, 800pcs/reel. As shown in the figure below: Figure 13 Packaging and taping diagram # 11. Contact us <u>Ai-Thinker official website</u> <u>Office forum</u> <u>Develop DOCS</u> <u>LinkedIn</u> <u>Tmall shop</u> <u>Taobao shop</u> <u>Alibaba shop</u> Technical support email: support@aithinker.com Domestic business cooperation: sales@aithinker.com Overseas business cooperation: overseas@aithinker.com Company Address: Room 403-405,408-410, Block C, Huafeng Smart Innovation Port, Gushu 2nd Road, Xixiang, Baoan District, Shenzhen. Tel: +86-0755-29162996 WeChat mini program WeChat official account # **Disclaimer and Copyright Notice** The information in this document, including the URL address for reference, is subject to change without notice. The document is provided "as is" without any warranty, including any warranty of merchantability, fitness for a particular purpose or non-infringement, and any warranty mentioned elsewhere in any proposal, specification or sample. This document does not assume any liability, including liability for infringement of any patent rights arising from the use of the information in this document. This document does not grant any intellectual property rights license, whether express or implied, by estoppel or otherwise. The test data obtained in this article are all obtained by Ai-Thinker Laboratory, and the actual results may vary slightly. All trade names, trademarks and registered trademarks mentioned in this article are the property of their respective owners and are hereby declared. The final right of interpretation belongs to Shenzhen Ai-Thinker Technology Co., Ltd. #### **Notice** The contents of this manual may be changed due to product version upgrades or other reasons. Shenzhen Ai-Thinker Technology Co., Ltd. reserves the right to modify the contents of this manual without any notice or reminder. This manual is only used as a guide. Shenzhen Ai-Thinker Technology Co., Ltd. tries its best to provide accurate information in this manual, but Shenzhen Ai-Thinker Technology Co., Ltd. does not ensure that the contents of the manual are completely error-free, and all statements, information and suggestions in this manual do not constitute any express or implied warranty. # Important statement Ai-Thinker may provide technical and reliability data "as is" (including data sheets), design resources (including design for reference purposes), application or other design recommendations, network tools, security information and other resources (the "these resources") and without warranty without express or implied warranty, including without limitation, adaptability for a particular purpose or infringement of intellectual property rights of any third party. And specifically declares that it is not liable for any inevitable or incidental losses arising from the application or the use of any company products and circuits. Ai-Thinker reserves the right to the information released in this document (including but not limited to the indicators and product description) and any changes to the Company without notice to automatically replace and replace all the information provided in the previous version of the same document number document. These resources are available to skilled developers who design Essence products. You will assume all responsibilities for the following: (1) select the appropriate optional products for your application; (2) design, verify, and run your application and products during the full life cycle; and (3) ensure that your application meets all corresponding standards, norms and laws, and any other functional. Ai-Thinker authorizes you to use these resources only for the application of the Ai-Thinker products described in this resource. Without the permission of Ai-Thinker, no unit or individual shall copy or copy part or all of these resources without authorization, and shall not spread them in any form. You are not entitled to use any other Principal or any third party intellectual property. You shall fully indemnify you for any claims, damages, costs, losses and debts incurred by the result of the use of these resources. The products available by Ai-Thinker are subject to the terms of sales or other applicable terms attached to the products. Ai-Thinker may provide these resources does not extend or otherwise change the applicable warranty or warranty disclaimer for the product release.